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ABSTRACT 

Power System security assessment and the associated planning studies are becoming 

more and more complex with ever increasing uncertainties in all time horizons. An effective 

means of performing operational and investment planning studies of network limitations 

associated with static or dynamic post-disturbance performance problems has been to take a 

Monte Carlo simulation based approach. The approach harnesses computing power to 

develop a database of post-contingency response over a wide range of different operating 

conditions, and then apply statistical or machine learning methods to extract useful planning 

and operational information from the database.  

Key to the machine learning based planning approach is the manner in which the 

different operating conditions are sampled to generate a training database. This work 

develops an efficient sampling procedure that maximizes information content in the training 

database while minimizing computing requirements to generate it, by finding the most 

influential region in the sampling state space and sampling operating conditions from it 

according to their relative likelihood. The Monte-Carlo variance-reduction methods are used 

to construct the proposed sampling approach, which is envisioned to allow market-oriented 

industries to operate the system according to economic rule. 

The dissertation also develops a comprehensive methodology to perform decision tree 

based security assessment for multiple contingencies. The system security limits and 

associated operating rules depend on the set of contingencies considered for planning. 

Considering the probabilistic nature of the power system, this work develops a risk based 

contingency ranking method that helps in screening the most critical contingencies from a 

contingency list. The developed contingency risk estimation method gives realistic risk 
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indices since it takes into account the non-parametric nature of operating condition 

distribution, and it also saves tremendous computational cost since it uses linear sensitivities 

to estimate the risk. Finally, a contingency grouping method is proposed that guides in 

generating common operating rules for every group that performs well for all the 

contingencies in that respective group, thereby providing system operators the benefit of 

dealing with lesser number of rules. The contingency grouping is based on newly devised 

metric called progressive entropy that helps in finding similarities among contingencies 

based on their consequences on the operating conditions along all the load ranges, and not 

just their proximity in the grid. 

The proposed methods are implemented in the west France, Brittany region of RTE-

France’s test system to derive decision rules for multiple contingencies against voltage 

stability problems. 
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CHAPTER 1 INTRODUCTION  

1.1 INTRODUCTION 

In the modern society, electric power is considered as one of the very vital commodities. 

With the growing dependence on industries in the current highly competitive economy and 

people’s fast-paced life style, there is a great importance given to power system reliability 

assessments and planning. Traditionally such studies in power system involve deterministic 

assessment techniques and criteria, that are being used in practical applications even now, 

such as WECC/NERC disturbance-performance table for transmission planning [1, 2]. But 

the drawback with deterministic criteria is that they do not reflect the stochastic or 

probabilistic nature of the system in terms of load profiles, component availability, failures 

etc [3]. Furthermore, in the current market oriented power structure where heavy transactions 

are happening over long transmission lines in an interconnected environment, the system is 

constantly pushed to its stability limits, and the number of uncertainties has increased 

tremendously with respect to generation dispatch, reactive resource availability etc. 

Therefore the need to incorporate probabilistic or stochastic techniques to assess power 

system reliability and obtain suitable indices or guidelines for planning has been recognized 

by the power system managers, planners and operators; and several such techniques have 

been developed [4, 5, 6, 7, 8]. 

1.2 PROBABILISTIC RELIABILITY EVALUATION METHODS IN POWER SYSTEM 

Power system reliability assessment can be divided into system adequacy (long term 

planning) and system security (operational) studies [9]. The term adequacy refers to the 

existence of sufficient resources to satisfy load entities or operational constraints, which 
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include facilities necessary to generate sufficient energy, reliably transport the energy 

produced to the load entities. The term security refers to the ability of the system to respond 

to dynamic or transient disturbances, which includes events such as contingencies that could 

lead to system instabilities etc. 

Typically reliability evaluation techniques can be divided into two categories [9]: 

• Analytical: Represent the power system using analytical models and evaluate the 

indices using mathematical solutions. 

• Simulation:  Monte Carlo simulation (MCS) methods used to estimate the indices 

or generate post-contingency data by simulating the actual process with 

randomness of system states. 

MCS methods have several advantages such as [9]: 

• Several system effects or process including nonelectrical factors such as weather 

effects etc. can be included in the study which may have to be approximated in 

analytical methods. 

• They can simulate from the probability distributions of the parameters to be 

sampled such as component failure or system operating conditions etc. 

• They can also provide probability distribution of performance measure random 

variables which have great practical significance. 

An overview of simulation methodology is shown in Fig. 1.1. It involves two major 

tasks: database generation approach and statistical or machine learning analysis as 

illustrated by left-hand-side and right hand side of the figure respectively. 
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Fig. 1.1 Power system probabilistic reliability analysis overview [10] 

1.2.1 Database Generation Approach 

Database generation approach involves the following steps: 

(1) Random Sampling: Operating parameters (load, unit commitment, circuit outages, 

power transfers etc.) are selected, assigned a distribution (e.g., uniform, Gaussian, 

exponential, empirical (historical records) etc.) and randomly sampled. This 

process is generally known as Monte Carlo sampling.  

(2) Optimal power flow run to obtain the initial state, and 

(3) Contingency events are simulated using steady-state or time-domain (dynamic) 

simulation, and post-contingency performance measures are obtained. 

1.2.2 Statistical Analysis 

The object of many simulation experiments in power system is the estimation of an 

expectation E[g(X)] , where X is a random vector, typically the system performance measure 
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obtained from contingency analysis output of data generation step. The expectation functions 

estimated based on performance measure typically provides system reliability indices. 

Such system reliability evaluation using MCS methods has been extensively developed in 

the domain of adequacy assessment [9, 11, 12] to evaluate: 

(i) Generating capacity reliability with indices such as loss of load expectation 

(LOLE), Loss of energy expectation (LOLE) etc. 

(ii)  Composite system reliability with indices such as Expected load curtailments 

(ELC), Expected demand not served (EDNS), Expected energy not served 

(EENS) etc.,  

(iii)  Distribution system reliability with indices such as System average interruption 

frequency index (SAIFI), System average interruption duration index (SAIDI) 

etc., 

(iv) Reliability worth/cost with indices such as Expected interruption cost (EIC) etc.  

For system security assessment studies, MCS is typically done to estimate risk-based 

system security limits with respect to transient stability, thermal overload, voltage stability 

etc., such as maximum allowable system loadability, expected ATC, expected voltage 

stability margin etc [13, 14, 15, 16]. 

1.2.3 Automatic Machine Learning Techniques 

Automatic machine learning methods [17, 18], also known as knowledge discovery from 

databases, are used to extract a high level information, or knowledge from a huge database 

containing post-contingency responses obtained from database generation step. The machine 

learning or data mining techniques are broadly classified as: 
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• Unsupervised learning: Those methods which do not have a class or target attribute. 

For example, association rule mining can be used to find the correlation between 

various attributes. Clustering methods such as k-means, EM etc. are generally used to 

discover classes. 

• Supervised learning: Those methods that have a class or target attribute, such as 

classification, numerical prediction etc., and use the other attributes (other observable 

variables) to classify or predict class values of scenarios. For example, naïve bayes, 

decision trees, instance based learning, neural network, support vector machine, 

regression etc. 

With the increase in computing power, this tool has been widely used in many disciplines 

ranging from psychology, medical diagnosis, image-processing, and so on. In the field of 

power system, it has found a very great application in security assessment [19, 20, 21, 22, 

23]. Other avenues of power system where they find application are design of protection 

systems, load forecasting [24], load modeling, state estimation, equipment monitoring etc. 

1.2.3.1 Decision Tree Based Inductive Learning 

There is particularly a great interest in using decision trees in power system security 

assessment for their ability to give explicit rules to system operators in terms of critical pre-

contingency system attributes. These operating rules help in guiding operators in energy 

control centers as shown in Fig. 1.2, during conditions for which contingencies may result in 

violation of reliability criteria. So effectively these operating rules help operators map the 

pre-contingency scenarios to post-contingency consequences, thereby in a predictive fashion 

delineating secure operating regions from insecure operating regions in the space of pre-

contingency parameters accessible in control centers such as flows, generation levels, load 
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levels etc. Therefore the proximity to a security boundary can be easily monitored, and when 

an alarm is encountered the operator must take appropriate control action to move into a 

more secure operating condition. This gives the operators a very simple and easy way to 

monitor and handle the power system operation, which otherwise is tedious for such a huge 

non-linear dynamic system.  

 

 

Fig. 1.2 Typical control center environment – Operational rules application 

So the decision tree based inductive learning method enables decision-makers in an 

operational planning environment to establish operating guidelines or rules in terms of 

threshold values of various critical pre-contingency system attributes, in order to figure out 

the conditions of power system during which it is secure/stable from post-contingency 

performance point of view [25, 26, 27, 28, 29]. 

The inductive learning is performed on the database obtained from database generation 

step and operational rules are derived, which is deductively applied to learn unknown 

scenarios. Information required for building decision tree: 

• A training set, containing several pre-contingency attributes with known class values 
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• The classification variable (i.e., class attribute with typical class values such as 

“secure” or “insecure”) could be based on post-contingency performance indices like 

voltage stability margin, etc. 

• An optimal splitting rule, i.e., rule to find critical attribute 

• A stopping rule, such as maximum tree length, depth, or minimum instances etc. 

Basic Algorithm: 

• INPUT  the training/learning data into the topmost node 

• IF  stopping rule applies for the given input dataset, THEN  stop, ELSE Apply the 

optimal splitting rule to select the best attribute for splitting the top node 

• Using the splitting rule, decompose the learning set into ‘p’  mutually exclusive 

subsets. Usually p = 2, binary tree with two outcomes such as “secure” and “insecure” 

• IF  classification achieved (use stopping rule), THEN  return classification, ELSE 

branch by setting ‘splitting’ attribute to each of the possible threshold values (can be 

interpreted as rules), and repeat with branch as your new tree, and the subset of data 

as the learning set 

The aim is to obtain a model that classifies new instances well and produces simple to 

interpret rules. Ideally we would like to get the best model that has no diversity (impurity), 

i.e., all instances belong to same class. But due to many other uncertainties or interactions 

that have not been accounted for in the model, there would be some impurity (i.e., non-

homogeneous branch) at most of the levels. So the goal is to select attributes at every level of 

branching such that impurity or diversity is reduced. There are many measures of impurity, 

which are generally used as optimal splitting criteria to select the best attribute for splitting. 

Some of those are Entropy, Information, Gini Index, Gain Ratio etc.  
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Classification accuracy and error rates can be used as the performance measures of a 

decision tree. There are two kinds of errors: False Alarms - Acceptable cases classified as 

Unacceptable; and Risks - Unacceptable cases as Acceptable. Errors can be calculated by 

testing the obtained decision model on the training set, which is usually an over-estimate. 

There are some training set sampling methods such as holdout procedures, cross-validation, 

bootstrap etc [18] to make the error estimation unbiased. It is even better if the testing is 

performed using an independent test dataset. Typically some portion of the original data is 

reserved for training and the remaining data used for testing. A rule of thumb is 1/3rd for 

testing and 2/3rd for training. There are numerous references [18] that explain the process of 

building a decision tree from a database with algorithms such as ID3, J48 etc. CART [30], 

Answer Tree [31], Orange [32], WEKA [33] etc. are some software available for building 

decision trees. 

Many utilities have taken and are continuing to take a serious interest in implementing 

learning algorithm such as decision tree in their decision making environment. French 

transmission operator RTE has been using decision tree based security assessment methods 

to define operational security rules, especially regarding voltage collapse prevention [34, 35, 

36, 37, 38, 39, 40, 41, 42, 43, 44]. They provide operators a better knowledge of the distance 

from instability for a post-contingency scenario in terms of pre-contingency system 

conditions, and they save a great amount of money while preserving the reliability of the 

system by enabling more informed control of the operation nearer to the stability limits. 

1.2.4 Summary 

Monte Carlo simulation based approach has been an effective means of performing 

operational and investment planning studies of network limitations associated with static or 
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dynamic post-disturbance performance problems. The approach harnesses computing power 

to develop a database of post-contingency response over a wide range of different operating 

conditions. Then statistical or machine learning methods such as decision tree are applied to 

extract useful knowledge from the database for decision making. 

1.3 OBJECTIVES 

This section presents the two major objectives of this dissertation work, along with the 

motivations behind the work and the significance of accomplishing the objectives. 

1.3.1 Efficient Processing of System Scenarios 

The most vital and sensitive part of Monte Carlo simulation based reliability studies is the 

stage of database generation. The confidence we will have in the results generally reflects the 

confidence we have in the set of system states generated. While in the case of statistical 

studies, the generated database does influence the quality of the estimate, in the case of 

machine learning studies it does influence the classification performance of the derived 

operating guidelines against realistic scenarios, selection of critical rule attributes and their 

threshold values (which will have bearing on economic operation of power system), and size 

of the operating rules. Furthermore, it typically incurs a high computational cost to improve 

the quality of estimates in statistical studies and rule’s performance in machine learning 

studies. So there is this contradictory objective of increasing the information content or 

intelligence in the database generation step at the expense of minimal computational cost. 

As mentioned, in the case of statistical studies the database generation stage using MCS 

methods typically become very time consuming as it needs very large sample size for 

estimating reliability indices with good accuracy (low variance). This is especially true for 

cases estimating reliability indices related to rare events. But this issue has been addressed 
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using several Monte Carlo variance reduction techniques, which have been applied in 

practice [45, 46, 47, 48, 49, 50] to improve the accuracy of estimation and also reduce 

computational cost. But in the field of decision tree based reliability assessment studies, the 

challenge of producing high information content training database at lower computational 

cost has not been addressed adequately [51, 52, 53, 54]. In the open literature, there are 

re-sampling methods to retain only the most important instances from an already generated 

training database [55, 56] for classification purposes. But such methods involve huge 

computational cost in first generating a training database, then identifying the most 

influential instances, and if need be, generate more of such instances. Recently, Genc et. al. 

[57] proposed an iterative method to a-priori identify the most influential region in the 

operating parameter state space, and then enrich the training database with more instances 

from the identified high information content region for enhancing classification performance. 

In this case, the method proposed to identify the high information content region involves 

heavy computational cost when the dimension of the operating parameter space increases, 

even beyond 10 parameters. Furthermore, the work doesn’t delineate the tremendous 

advantages of training a decision tree using high information contained database, but rather 

waters down its significance by including training instances also from other regions, that may 

not be so influential to the decision making process. 

So the primary objective of this dissertation is to develop an efficient database generation 

method that creates a satisfactory training database with low computational cost by sampling 

most influential operating conditions from the input operating parameter state space prior to 

the stage of power system contingency simulation. In short, the objective is to maximize 

information content in the training database, while minimizing computing requirements to 
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generate it. This work develops a linear sensitivity based method to very quickly identify the 

high information content region in a multidimensional operating parameter state space with 

non-parametric probability distribution. The work clearly explains and demonstrates the 

advantage of exclusively generating a training database from the identified high information 

content region of the operating parameter state space.  

1.3.2 Decision Tree based Operational Planning for Multiple Contingencies 

The reliability assessment, and consequently the short term operational and long term 

investment planning solution strategies depend on the set of contingencies considered in the 

planning study. Typically, a thorough contingency analysis of many contingencies is 

performed, and the most important ones based on system reliability limits are screened. Then 

appropriate solution strategies are devised, i.e., in our case relevant decision trees are 

developed to address every critical contingency screened. 

In order to reduce the computational burden of contingency analysis, contingency ranking 

methods are typically used in power system reliability assessment studies. They help in fast 

screening of the most critical set of contingencies for thorough analysis and planning. While 

there are many deterministic ranking methods that considers the impact or severity of 

contingencies [58, 59];  under the current highly probabilistic nature of power system, a 

contingency ranking method which does not consider the probability of contingencies would 

lead to misleading operational solutions strategies against real time conditions. This is because 

the risk posed by a contingency under a wide variety of operating conditions not merely depends on 

its severity, but also on its probability of occurrence. So we propose to develop a risk based 

contingency ranking process that would eventually help in screening top contingencies 
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leading to voltage collapse, where the risk index of a contingency is estimated as the product 

its severity over various operating conditions and its probability. 

The decision tree based operational planning for multiple contingencies is further 

advanced by the proposed concept of contingency grouping. The proposed contingency 

grouping method will strike a balance between producing simple and accurate trees, as well 

as reducing the number of trees for multiple contingencies. The grouping of contingencies is 

based on a novel criterion, known as progressive entropy curves, that reflects the overlap 

among various contingency’s effect on operating conditions, which is unlike traditional 

methods based on geographical proximity.  

1.4 DISSERTATION ORGANIZATION 

The rest of this dissertation is organized as follows: 

Chapter 2 presents the proposed efficient sampling strategy to generate database with 

high information content for training decision trees. The chapter gives a detailed description 

of the “information content” concept, and systematically presents the two-stage efficient 

training database generation method constructed using Monte Carlo variance reduction 

techniques. The efficient sampling approach developed is demonstrated on French EHV 

network to derive operating rules against voltage stability problems. The chapter also gives 

detailed account of extracting relevant historical data for our study from French SCADA 

system. 

Chapter 3 addresses the very important issue of capturing finer details of multivariate 

load distribution such as its non-parametric nature and the mutual correlation in order to 

generate realistic operating conditions using the Monte Carlo sampling process. The chapter 

also focuses on the development of fast state space characterization method based on LHS of 
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stress directions and linear sensitivity measures. The developed efficient processing method 

is applied on French EHV network for security assessment against voltage stability problems, 

and the results are analyzed in great detail. The chapter also sheds some light on the 

simulation methodologies used to realize the fast characterization of parameter state space. 

Chapter 4 presents a comprehensive security assessment method based on decision trees 

for multiple contingencies. With earlier chapters as the backbone to perform the security 

assessment, the crux of the chapter deals with two concepts to build the comprehensive 

multiple contingency security assessment process: risk based contingency ranking and 

contingency grouping. The chapter presents a detailed technical description of both the 

concepts, and presents the application results for seven contingencies considered in the west 

region of French network. 

Chapter 5 presents conclusions and significant contributions of this work, and discusses 

possible future works. 
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CHAPTER 2 HIGH INFORMATION CONTENT DATABASE 

GENERATION FOR DECISION TREE BASED OPERATIONAL 

PLANNING  

2.1 INTRODUCTION 

Decision tree based inductive learning method serves as an attractive option for 

preventive-control approach in power system security assessment. It identifies key pre-

contingency attributes that influence the post-contingency stability phenomena and provides 

the corresponding acceptable scenario thresholds. These guidelines are deductively applied to 

classify any new pre-contingency scenario with respect to its post-contingency performance, 

thereby enabling maximum utilization of available resources without compromising the 

reliability of power system in real time. 

2.2 MOTIVATION AND PROPOSAL 

Database generation for training is the critical aspect of performance of any data mining 

based power system reliability studies. Generally a uniform or random sampling of system 

states is carried out by varying parameters such as load level, unit commitment, system 

topology, exchanges at the boarders, component availability etc. according to their 

independent probability distributions obtained from projected historical data [10, 25, 38, 42, 

43, 60] or forecasted 24-hour data [26, 27, 28, 29]. Then, various scenarios are simulated for 

a pre-specified set of contingencies or faults. This stage is generally very tedious and time 

consuming, as there could be a tremendously large number of combinations of variables and 

topologies, even within a ‘study region’ (about 5000-15000 samples for a statistically valid 

study [10]). Some studies [25, 26, 28] expend extra computation after validating the 
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operational rules to increase the unstable (rare) situations in database to improve the 

accuracy. While this would reduce one type of error, namely ‘risk’ of misclassifying 

unacceptable scenario as acceptable, it does not address the other error, namely ‘false alarm’ 

due to misclassifying acceptable scenario as unacceptable. Moreover if the sampled unstable 

situations are unrealistic or unlikely, then it could make the rules very conservative, i.e either 

costly to respect or sending irrelevant warning regarding the true limit of the system (more 

false alarms) by   misclassifying acceptable scenarios as unacceptable. 

In this chapter, we propose to develop an efficient sampling method to generate 

influential operating conditions that captures high information content for better 

classification and also reduces computing requirements. This efficient sampling is 

constructed using the Monte Carlo Variance Reduction (MCVR) techniques. Among the 

mostly used MCVR methods, control variate and antithetic variate take advantage of the 

correlation between certain random variables to obtain variance reduction in statistical 

estimation studies. Stratification method and importance sampling method re-orient the way 

the random numbers are generated, i.e., alters the sampling distribution [61, 62]. The 

proposed efficient sampling method is constructed using the importance sampling method for 

its ability to bias the Monte Carlo sampling towards the influential region identified a-priori; 

and generate samples within the influential region preserving the original relative likelihood 

of the operating conditions. 

In order to sample the influential operating conditions, the operating parameter state 

space must be characterized with respect to post-contingency performance first. C. Singh et. 

al. [47] proposed a state space pruning method to identify the important region in a discrete 

parameter space composed of generation levels and transmission line capacities under a 
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single load level for system adequacy assessment. X. Yu et. al. [63] proposed self-organized 

mapping, a unsupervised neural network, together with Monte Carlo simulation (MCS) to 

characterize the transmission line state space. The method that we have developed uses 

stratified sampling to characterize operational parameter state space. 

The remaining parts of this chapter are organized as follows. Section 2.3 describes the 

concept “information content” in the context of this work. Section 2.4 presents the technical 

approach of the proposed high information contained training database generation. Section 

2.5 demonstrates the application in deriving operational rules for voltage stability problem in 

Brittany region of RTE’s system, and presents results. Section 2.6 concludes. 

2.3 HIGH INFORMATION CONTENT 

The decision tree learning algorithm requires a database that has good representation of 

all the class values, so that it can effectively classify new instances and not overlook the less 

representative classes. So, for a two-class problem, a good representation of operating 

conditions on both sides of the class boundary is required. Also, not every operating 

condition on both sides of the class boundary contributes equally to the operating rule 

derivation process. For instance, consider sampling some operating conditions defined in 

terms of variations in Loads A and B as shown in Fig. 2.1a. Perform contingency analysis to 

find the post-contingency voltage stability performance. A suitable rule can be defined by 

line R that effectively partitions the operating region with acceptable post contingency 

performance from unacceptable performance. We refer to this line as the security boundary. 

Now, if more operating conditions are sampled as shown in Fig. 2.1b, the samples drawn 

near to the security boundary influences the rule making process more than the samples away 

from the boundary. This is evident from the consequent rule change (shifting line R) that is 
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2.1c. So it is very essential that the database contains operating 

conditions nearer to the security boundary with finer granularity, since they convey more 

information on the variability of the performance measure, which thereby enables a clear cut 

decision making on the acceptability of any operating condition. Furthermore, if the some of 

the operating conditions with unacceptable performance near the rule line R in Fig. 

less likely to occur in reality, then the rule line R may be shifted slightly upwards to exploit 

more operating conditions for economic reasons, as shown in Fig. 2.1d. Hence the desired 

tial operating conditions are obtained by sampling according to the probability 

distribution of the boundary region, which is the shaded region in Fig. 2.1d where there is a 

high uncertainty in the acceptability of any operating condition. This will also e

good representation of both the classes in the database at a reduced computational cost 

compared to sampling from the entire operational parameter state space probability 
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unacceptable performance near the rule line R in Fig. 2.1c are 

less likely to occur in reality, then the rule line R may be shifted slightly upwards to exploit 

1d. Hence the desired 

tial operating conditions are obtained by sampling according to the probability 

1d where there is a 

high uncertainty in the acceptability of any operating condition. This will also ensure a very 

good representation of both the classes in the database at a reduced computational cost 

compared to sampling from the entire operational parameter state space probability 
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has the maximum entropy, produced at reduced computational cost

R 

18 
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Acceptable performance               Unacceptable performance

Fig. 2.1 High information content region 

, the most commonly used information theoretic measure for the 

information contained in a distribution, is used to quantify information content 

a function of class proportions, when operating conditions are sampled according to 

. Entropy is given by equation (2.1) 
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operating parameter state space, a database containing samples within the boundary region 
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security boundary generally falls in the lower probability region of the 

operating parameter state space, a database containing samples within the boundary region 
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2.4 TECHNICAL APPROACH 

The overall flowchart of risk-based planning approach is shown by Fig. 2.2, along with 

the proposed efficient sampling approach. The proposed algorithm consists of two stages, 

where stage I utilizes a form of stratified sampling to approximately identify the boundary 

region and stage II utilizes importance sampling to bias the sampling towards the boundary 

region.  

 

 

Fig. 2.2 Proposed approach 
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The database generation is performed for every critical contingency or a group of critical 

contingencies screened, as depicted by the contingency loop. The accuracy loop feeds back 

information about the region of sampling state space requiring more emphasis in training 

database, in order to reduce decision tree misclassifications and improve the accuracy. This 

chapter focuses on the proposed efficient sampling method. Chapter 4 will present proposed 

contributions in multiple contingencies analysis and decision making process using decision 

tree. 

2.4.1 Stage I - Identification of boundary region 

Consider the sampling space to be an N-dimensional hypercube, where N is the number 

of selected operating parameters to be used in the study (loads, production levels, etc.). Stage 

I divides the hypercube into M smaller hybercubes. The situation for the simplest case, N=2, 

with M=20, is illustrated in Fig. 2.3.  
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Fig. 2.3 Illustration of stratified sampling 



www.manaraa.com

21 
 

Stage I selects the center point of each of the M smaller hypercubes and performs an 

assessment to identify post-contingency performance for each point. In other words, a first 

set of simulations is launched on a limited number M of network situations among all the 

possible ones at a coarse resolution. A typical result of such a sampling is shown in Fig. 2.4, 

where the enclosure contains all hypercubes that neighbor a hypercube of the opposite 

performance level, forming a first estimation of the boundary region. 

 

 

Fig. 2.4 Illustration of stage I 

2.4.2 Stage II – Sampling 

The standard Monte Carlo sampling approach draws values for each parameter in 

proportion to the assigned distribution. Given the previous knowledge of the boundary region 

from Stage I, biasing the sampling process towards the boundary region using importance 

sampling method maximizes the information content. 
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2.4.2.1 Importance Sampling Variance Reduction 

In both adequacy studies and risk-based security planning studies, the quantity of interest 

is probability of unacceptable performance, i.e., P(Y ~ unacceptable events) [9]. 
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where, y=t denotes the threshold performance level such that  y < t is unacceptable 
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The above expectation function gives crude Monte Carlo estimation [65], where yi are 

Monte Carlo samples taken from the distribution f(y), the post-contingency performance 

index probability distribution. This estimation has a variance associated with it, as the 

quantity h(yi) varies with yi. Importance sampling attempts to reduce the variance of the 

crude Monte Carlo estimator by changing the distribution from which the actual sampling is 

carried out. Suppose it is possible to find a distribution g(y) such that )()()( yfyhyg α , then 

the variance of estimation can be reduced by reformulating the expectation function as, 
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where yi are Monte Carlo samples drawn from the distribution g(y), and this ensures the 

quantity 
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By choosing the sampling distribution g(y) this way, the probability mass is redistributed 

according to the relative importance of y as measured by the function |h(y)| f(y) [61]. 

2.4.2.2 Proposed Efficient Sample Generation 

The property of importance sampling to bias the sampling using an importance function 

g(y) towards an area of interest, as discussed above is used to generate influential operating 

conditions from operational state space, X in our method. The joint probability distribution of 

the operational parameter space f(x) can be obtained from historical data [66]. 

Once we have a-priori information about f(x), stage-I operation provides the region in X 

through which the boundary most likely occurs and therefore identifies approximately the x-

space in which we want to bias the sample generation. The region of interest for sampling in 

terms of indicator function is, 
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where S is the boundary region. For instance, in a univariate case, we can define it as S={x: 

x1 ≤ x ≤ x2}, as shown in Fig. 2.5.  

 

 

Fig. 2.5 Boundary region in operating parameter distribution f(x) 
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The importance function or the sampling distribution g(x) can be constructed proportional 

to |h(x)| f(x), i.e., focusing on the region S of f(x). In general, the importance sampling 

density can be expressed as, 

)I( * )(*)1()I( * )(*)( 21 SxxfpSxxfpxg ∉−+∈=
     (2.7) 

where p controls the biasing satisfying the probability condition p≤1, )(1 xf  is the probability 

density function of the boundary region, and )(2 xf  is the probability distribution function of 

the region outside boundary. 

We adopt a composition algorithm to generate samples from this distribution [67, 68]. If 

we set p=0.75, then 75% of the points can be expected from region S. This kind of upward 

scaling in boundary region probability distribution by the importance function g(x) is 

depicted by Fig 2.6. 

 

 

Fig. 2.6 Generic importance sampling distribution function g(x) 

Hence p serves as sliding parameters that control the extent of biasing, i.e., sliding 

between a completely operational study (p=1, requiring most influential points for rule 

g(x) 
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making) to investment planning study (p=0, requiring a wide range of operating conditions). 

The optimal importance sampling density g(x) for our operational study is when p=1, i.e., 

full bias towards the boundary region, expressed as the original state space probability 

distribution conditional on the boundary region, 

)(
1

)|()( xf
a

Sxxfxg =∈=           (2.8)  

∫= S
dxxfa )(          (2.9) 

Since the scaling factor ‘a’ is a probability and therefore, must obey 0≤a≤1, equation 

(2.9) represents an upwards scaling. i.e., the probability distribution is altered such that more 

samples are from the region of interest. 

2.5 NUMERICAL RESULTS 

2.5.1 System Description 

The proposed sampling approach is applied for a decision tree based security assessment 

study for deriving operating rules against voltage stability issues on SEO region (Système 

Eléctrique Ouest, West France, Brittany), a voltage security-limited region of the French 

EHV system containing 5331 buses with 432 generators supplying 83782 MW.  

Figure 2.7 shows 400 KV network of the French system, where it can be seen that the 

Brittany region (in grey) is pretty weakly interconnected. During winter periods, when 

demand peaks, the system gets close to voltage collapse limits. Moreover the local 

production capabilities being far lower than the local consumption, it puts the EHV grid 

under pressure as the needed power comes from remote location, eventually  leading to 

cascading phenomenon at the sub voltage levels. The red star indicates busbar fault at 225 
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KV Cordemais bus, which is the most credible contingency in the Brittany region during 

winter period.  

 

 

Fig. 2.7 French 400 KV network with SEO and Brittany highlighted 
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So in order to avoid the risk of collapse situations under such contingency events, the 

operator may have to resort to expensive preventive measures such as starting up close yet 

expensive production units. It is therefore very important to assess the risks of a network 

situation correctly considering uncertainties in operating conditions and obtain operating 

rules built off-line with decision trees, that aid to take right decision at right time. 

2.5.2 Study Specifications 

Data preparation: The historical database of French EHV power grid system for the 

study is extracted from records made every 15 seconds on the network by SCADA, as shown 

by Fig. 2.8. The data for each month of the year is stored in many text files containing 

respecting columns of data:  

• Time data i.e. the year, the month, the day, the hour, the minute, the day of the 

week of the recording;  

• Node data i.e. voltage, voltage level, active and reactive consumption and 

production per node; and  

• Branch data indicating the origin and the end nodes, their voltage level, if they 

are connected or not and the active and reactive transit considered at both 

extremities. 

Figure 2.9 shows the 2007 annual load data in SEO region of French grid extracted from 

the historical database. The load starts to increase much at the end of October, as the winter 

comes closer, and decreases in February. The heavily loaded period is the winter, during 

December, January, and February months. A lot of loads were shed in the month of January 

under stressful conditions motivated by economic and reliability considerations for system 

operation, which explains the dip in the load during that month. 
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Fig. 2.8 French EHV historical data from SCADA 

The loading pattern over the year changes depending upon various factors such as, if it is 

winter or summer, week or week-end, day or night, peak-hours or off peak hours etc. 

Typically, the load is heavier during the daytime of weekdays in winter, as shown by the 

statistics in Table 2.1. There are two peak-hours during a day in winter, i.e., in the morning 

around 8/9 am and the evening around 7.30/8 pm; and there is a secondary peak hour around 

10/10.30 pm, as shown by Fig. 2.10 where a typical behaviour of the load over a typical 

winter day (7th February 2007) is depicted. 

 
Fig. 2.9 2007 annual SEO load 
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Table 2.1 2007 historical load data statistics 

 Mean  Median  Max  
Full year  7729  7640  13607  
Summer (June to Sept.)  6609  6600  9182  
Winter (October to march)  8585  8539  13607  
Winter (December to Feb.)  9290  9307  13607  
Winter (December to Feb.) – Week days  9758  9823  13607  
Winter (December to Feb.) - Week 8hr to 22hr  10350  10284  13607  

 

Therefore, these heavily loaded periods are the most constraining in terms of voltage, and 

the study focuses on them for generating samples of operating conditions in the voltage 

stability study. Therefore, MCS is not performed on the entire year distribution, but only on 

those relevant periods of year depending on the type of stability problem under consideration. 

 

 
Fig. 2.10 Load behavior on February 7, 2007 – A typical winter day 

 

Sampling: The pre-contingency operating conditions are generated from a base case, by 

considering random changes of key parameters. The basecase of SEO network considered 

corresponds to 2006/2007 winter with 13500 MW baseload. The most constraining 

contingency is the Cordemais busbar fault in the Brittany area that leads to trip nearby 

generation units.  Under extreme conditions, this fault may lead to a Brittany voltage 
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collapse. The parameters that we play on to generate basecases are total SEO load, SVC 

unavailability and generator group unavailability in Brittany area. The unavailability of main 

production units, which includes nuclear groups in Civaux, Blayais, St-Laurent, Flamanville, 

and Chinon are sampled such that each of these 5 unavailabilities are represented in 1/6th of 

the total basecases. There are 2 SVCs in the Brittany region i.e., at Plaine-Haute and Poteau-

Rouge, and their unavailabilities are sampled such that 25% of the cases have them both, 

25% do not have them both and 50% have only one of them. The total Brittany load, 

continuous parameter, is sampled using our proposed efficient sampling method. The load 

sampling is done keeping power factor constant. All the load samples are systematically 

combined with SVC and generator group unavailabilities respecting their respective sampling 

laws to form various basecases. 

Contingency analysis and database generation: For each basecase, an optimal power 

flow is performed, minimizing the production cost under voltage, current, flow constraints in 

N. Abnormal/unrealistic cases that results in MW shedding or MVar addition to achieve 

convergence or do not converge are thrown off. Then consequences of busbar fault event are 

studied with a quasi steady state simulation (QSSS) tool, where the simulation is run for 

1500s with 10s step size, and the contingency is applied at 900s. Scenarios are characterized 

as unacceptable if any of SEO EHV bus voltage falls below 0.8 p.u or the simulation does 

not converge. Then a learning dataset is formed using pre-contingency attributes of every 

scenario (sampled at 890s of QSSS) that drives voltage stability phenomenon, such as 

voltages, active/reactive power flows, productions etc, and their respective classifications. 

Then security rules are produced from decision tree to detect a probable voltage collapse 
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situation contingent upon the severe event. An independent test set is used to validate the 

tree. 

The software tools used in the study are: 

1. ASSESS [69] - Special platform for statistical and probabilistic analyses of power 

networks, that has the capability to generate many scenarios randomly or systematically to 

model system uncertainties 

2. TROPIC [69] - Optimal Power Flow tool, embedded with ASSESS, to create initial 

base cases 

3. ASTRE [69] - Simulating slow dynamic phenomena (QSSS), embedded with 

ASSESS 

4.SAS - Statistical analysis and database processing 

5. ORANGE [32], WEKA [33] - Decision tree tools 

2.5.3 Efficient Sampling of Load Parameter 

As mentioned in the section 2.5.2, the variable part of the system load, a continuous 

parameter that will accommodate the various uncertainties in the operating conditions was 

sampled according to the proposed efficient sampling method. The load is homothetically 

distributed among all the individual loads, i.e., a constant stress direction. 

In order to find the boundary region in the load state space, a stratified sampling (100 

MW interval) of the load was done, many variants were formed by systematically combining 

with discrete variables, i.e., SVC and generator unavailability. Contingency analysis was 

performed for every variant and each scenario is classified as acceptable and unacceptable. 

Figure 2.11 shows the characterization of boundary region in the load state space with 

respect to post-contingency performance. The boundary region capturing the variability of 
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performance measure is the defined by the range of values between 11860 MW and 

12600 MW. 

 

 

Fig. 2.11 Stratified sampling defining boundary region 

 

The variable part of the system load, a univariate variable, follows a normal distribution 

N(9883.6, 979583), according to 2006-07 historical data of peak hours (weekdays 8hr to 

22hr) during winter period, as shown in Fig 2.12. Figure 2.12 also shows the probability 

distribution of the boundary region identified by stage-I. Importance sampling is performed 

on the probability distribution of the load with p = 1 in equation (2.7), to bias sampling 

towards the boundary region. 
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Fig. 2.12 Probability distribution of variable part of the system load 

2.5.4 Results 

There are many system attributes that can be included in training dataset as potential rule 

attributes. Some of them that are influential for a voltage stability study include 400 KV node 

voltages, active and reactive power reserves of the production groups in SEO, active and 

reactive power flows in tie lines of SEO, net inter-area transactions, etc. 

Table 2.2 shows the effectiveness of various attribute sets in terms of classification 

accuracy and error rates. Accuracy can be defined as the percentage of points correctly 

classified, false alarm rate can be defined as the ratio of total misclassified unacceptable 

instances among all unacceptable classifications, and risk rate is defined as the ratio of total 

misclassified acceptable instances among all acceptable classifications. Attribute set 
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“Voltage” contains 46 400 KV node voltages, “P reserve” contains 10 generator group’s and 

total SEO real power reserve, “Q flow” contains various attributes such as 12 400 KV tie line 

reactive flows from SEO region to other regions, 4 interarea 400 KV reactive transfers, and 

net reactive power export; and “Q reserve” contains 10 generator group’s and total SEO 

(including SVCs) reactive power reserve. 

The training database obtained by sampling from the boundary region contains 940 

operating conditions. The test set includes 459 instances unseen by training set that covers a 

wide range of operating conditions, with some also falling within the boundary region, for it 

is very important to obtain decision rules that classify conditions near the threshold correctly. 

From Table 2.2, we can see that “Q reserve” is a good attribute with lowest risk among high 

accuracy attributes. This conclusion meets local operators’ experiences that Q reserves give 

warning prior any voltage drop. 

 

Table 2.2 Attribute set performance comparison 

Attribute set Accuracy (%) False Alarm Risk 

Voltage 98.4 0.013 0.023 

P reserve 90.1 0.059 0.201 

Q flow 97.34 0.025 0.03 

Q reserve 99.04 0.006 0.019 

Voltage + Q flow 98.83 0.01 0.015 

Voltage + Q reserve 99.04 0.004 0.023 

Voltage + Q reserve + Q flow 99.04 0.004 0.023 

 

Figures 2.13 (a), (b), (c), (d) show the total SEO load probability distribution from 

sampled operating conditions as the sliding factor p increases from base value in f(x) to 1. 
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                (a) p = 0.25                                    (b) p = 0.50   

 

                        (c) p = 0.75                                               (d) p = 1.0 

 

Fig. 2.13 Effect of p on sampled total SEO load probability distribution 

This study was performed to investigate the influence of the sliding factor p on rule 

performance. Table 2.3 shows the results, when validated using the test dataset mentioned 

earlier. A slight bias in the test set distribution towards security boundary region is to validate 

the operational rule’s classification performance against critical scenarios and also to show 

the significance of generating high information contained training database. Nevertheless the 

test set is still independent due to the fact that the testing samples are generated randomly and 

the instances are unseen by the training set.  

In Table 2.3, we can see that the training database biasing towards boundary region 

increases as sliding factor k1 increases from default value of about 15% (in the original 
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distribution) to 100%, as observed from the fact that the representation of unacceptable 

scenarios (Un) relative to acceptable scenarios (A) increases in the database of same size. 

Consequently the value of entropy, computed according to equation (1) measuring the 

information content in the database, also increases as the samples generated from boundary 

region increases. 

 

Table 2.3 Performance comparisons between sampling bias 

Bias, p (%) A:Un Entropy Accuracy (%) False Alarm Risk 
15 (base) 889:51 0.3042 83.19 0.033 0.527 

25 825:115 0.5361 95.21 0.028 0.087 
50 781:159 0.6558 96.17 0.027 0.068 
75 738:202 0.7507 97.55 0.016 0.045 
100 676:264 0.8566 99.04 0.004 0.023 

 

Figure 2.14 shows the increase in rule accuracy, and Fig. 2.15 shows the decrease in false 

alarm and risk rate, with increase in bias towards boundary, indicating that the training set 

generated within boundary can classify well wide-range of operating conditions. This is very 

beneficial for an operational planning study. Similarly, by suitably adjusting k1, we can draw 

operating conditions that cover a wide range in parameter state space suitable for investment 

planning studies. 
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Fig. 2.14 Rule 

Fig. 2.15 Error rates 

Figure 2.16 shows the plot between classification accuracy and entropy as the bias factor 

k1 increases from base value to 100%, for a given database size of 940, i.e., for a constant 

computing requirement. It can be seen that the classification accuracy increases as the 

37 

Rule accuracy vs. sampling bias towards boundary

Error rates vs. sampling bias towards boundary 

shows the plot between classification accuracy and entropy as the bias factor 

increases from base value to 100%, for a given database size of 940, i.e., for a constant 

computing requirement. It can be seen that the classification accuracy increases as the 

 

sampling bias towards boundary 

 

shows the plot between classification accuracy and entropy as the bias factor 

increases from base value to 100%, for a given database size of 940, i.e., for a constant 

computing requirement. It can be seen that the classification accuracy increases as the 
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training database entropy increases. This indicates that for a given computation the database 

that exclusively captures the variability of performance measure across the boundary region 

performs well. 

 

 

Fig. 2.16 Accuracy vs. database entropy, for a given computation 

Table 2.4 shows the result of another study comparing three different sampling 

approaches, namely, sampling from the entire state space according to its probability 

distribution, uniform sampling of boundary region, and importance sampling of boundary 

region. It can be seen that the accuracy is more and the error rates are less for importance 

sampling, even with decreased computation, as depicted by Fig. 2.17. Figure 2.17 also shows 

that by increasing computation deliberately, higher accuracy can be obtained with importance 

sampling strategy. 

p=15 

p=25 p=50 

p=75 

p=100 
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Table 2.4 Performance comparison

Sampling
1. Entire Space
2. Boundary Uniform
3. Boundary IS
4. Boundary IS
5. Boundary IS

Fig. 2.17

The above results show the effectiveness of importance sampling based strategy to 

generate efficient training set for decision tree based learning studies. It was observed that 

with lesser computation more information content ca

improvement of operating rule’s performance is possible. The developed training database 

generation method can be applied for other data mining techniques

and also against other power system security 
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Performance comparisons between different sampling strategies

Sampling Size Accuracy (%) False Alarm
Entire Space 940 83.19 0.028 
Boundary Uniform  800 92.35 0.11 
Boundary IS-I 470 94.89 0.028 
Boundary IS-II 752 96.81 0.013 
Boundary IS-III 940 99.04 0.004 

 

17 Comparison between sampling strategies 

The above results show the effectiveness of importance sampling based strategy to 

generate efficient training set for decision tree based learning studies. It was observed that 

with lesser computation more information content can be generated, and consequently 

improvement of operating rule’s performance is possible. The developed training database 

generation method can be applied for other data mining techniques as shown

against other power system security problems. 

1 

2 

3 

4 

5 

trategies 

False Alarm Risk 
0.527 
0.043 
0.11 
0.08 
0.023 

 

The above results show the effectiveness of importance sampling based strategy to 

generate efficient training set for decision tree based learning studies. It was observed that 

n be generated, and consequently 

improvement of operating rule’s performance is possible. The developed training database 

as shown in Table 2.5, 
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Table 2.5 Importance sampling for various data mining techniques 

Bias factor, p Naïve Bayes  SVM1 IB51  DT1 

 
0.25 

 
75.79 

 
96.48 

 
94.07 

 
95.21 

0.5 78.71 98.28 95.45 96.17 

0.75 83.43 98.71 97.16 97.55 

1 92.78 99.65 97.68 99.04 
 

     
 
Typically, a rule is desired to be simple and efficient enough to separate unacceptable 

situations from acceptable ones, such that it leads to no risks and minimizes the false alarms. 

The risk corresponding to importance sampling method (No.5) shown in Table 2.4 with 940 

samples is 0.023%. One way to reduce risks is to use a cost-sensitive classification, i.e., 

specifying a cost for misclassification. By making the cost of risk twice the cost of false 

alarm, the risk percentage is reduced to 0.011%, while false alarm slightly increases to 0.01% 

from 0.004%. The cost of misclassification reduces by 2 units, under the assumptions of cost.  

Another way to reduce risk is to have a feedback loop from the rule validation stage to 

sample generation stage, which gives appropriate information to increase the representation 

of expensive misclassified conditions in the database, so that the decision tree is able to 

classify them properly. In real time application, the misclassified or strange (i.e., in 

comparison with the historical loading conditions) operating conditions can be flagged and 

then used to update the decision rules by updating the training database with the flagged 

instances. 

                                                 
[1] SVM - support vector machine; IB5 - nearest 5-neighbour instances based learning; DT - decision tree  
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2.6 CONCLUSIONS 

The proposed efficient sampling method based on importance sampling idea is one of the 

first to be used in power systems for making decision tree based learning methods effective. 

The thrust of the proposed sampling procedure is to re-orient the sampling process using 

importance sampling to focus more heavily on points for which post-contingency 

performance is close to the threshold forming the boundary region that contains operating 

conditions influential for rule formation. The primary goal is to increase the information 

content in the learning database while reducing the computing requirements, and 

consequently obtain operational rules that are more accurate for usage in real-time situations.  

The results show that the generated training database enhances rules’ accuracy giving less 

error rates when compared with traditional sampling approaches. 
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CHAPTER 3 EFFICIENT PROCESSING OF SYSTEM SCENARIOS 

IN MULTIVARIATE NON-PARAMETRIC OPERATING PARAMETER 

DISTRIBUTION  

3.1 INTRODUCTION 

Decision tree based planning tools provide operators with the most important system 

attributes that guide them in deciding as to what situation requires operator action. Chapter 2 

focused on the key aspect of this approach, namely devising an efficient Monte Carlo 

sampling approach to capture high information content and reduce computational cost in the 

database generation step. The developed efficient sampling process was also illustrated on 

French EHV network. This chapter focuses on the data processing (preparation) stage prior to 

the MCS stage, and the techniques to achieve the proposed efficient Monte Carlo sampling 

approach are appropriately constructed. 

3.2 MOTIVATION AND PROPOSAL 

In chapter 2, the global load was distributed homothetically (i.e., proportion of individual 

loads to global load same as basecase) along the most probable stress direction. This is 

typically done in various studies, where samples of representative basecases are drawn for 

various loading conditions, i.e., peak, mid, low etc., assuming a particular load stress pattern. 

Some of the motivations for such assumption are: 

1. The assumed stress direction is the most likely one as indicated by the historical data. 

2. To reduce the computational burden. 

The sampling procedure becomes computationally very burdensome for a very large 

dimensional sampling state space, if the individual load’s mutual correlation information is 
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taken into account for accommodating multiple stress directions

more reasonable sampling space

assumption is made that all loads vary in proportion to the total, so that the load at any bus 

maintains a constant percentage of total load as total load changes, i.e.,

PLi0 and PT0 are the bus i load and total load, respectively, in the base case.

voltage instability analysis, these assumptions amount to the definition of a particular 

direction through the space of possible load increa

So the load uncertainty is addressed only in terms of a single variable: total load (

This is illustrated in Fig. 3.1, where we consider a much simplified power system with only 

two load buses, and the mean value of 

Fig. 3.1 Sample points of PT 
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for accommodating multiple stress directions. So, in order to 

sampling space which would reduce the computation

that all loads vary in proportion to the total, so that the load at any bus 

maintains a constant percentage of total load as total load changes, i.e.,LiP =

load and total load, respectively, in the base case. In the language of 

voltage instability analysis, these assumptions amount to the definition of a particular 

through the space of possible load increases.  

So the load uncertainty is addressed only in terms of a single variable: total load (

This is illustrated in Fig. 3.1, where we consider a much simplified power system with only 

two load buses, and the mean value of PT is the baseload of 1000 MW. 

 in 2-dimensional parameter space with assumed stress direction

So, in order to provide a 

which would reduce the computation, a very strong 

that all loads vary in proportion to the total, so that the load at any bus i 

T
T

Li P
P

P

0

0= , where 

In the language of 

voltage instability analysis, these assumptions amount to the definition of a particular stress 

So the load uncertainty is addressed only in terms of a single variable: total load (PT). 

This is illustrated in Fig. 3.1, where we consider a much simplified power system with only 

 

dimensional parameter space with assumed stress direction 
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PT is assumed to be distributed normally about its mean value, and the stress direction is 

defined by the assumed proportions of 60% and 40% for loads 1 and 2 respectively. 

proposed efficient sampling approach was illustrated in chapter 2, the 

performed only in the univariate space

shown in Fig. 3.2 and importance sampling is performed to bias the sampling towards this 

region.  

Fig. 3.2 Boundary identification within sample space of operating points shown in 2

However, in reality the individual loads may vary along multiple stress directions

confining to the single stress direction may 

3.3, which shows an operating parameter space for a three

it is a 3-dimensional figure). As discussed previously, sampling from a single stress direction 

(i.e., the expected stress direction

44 

is assumed to be distributed normally about its mean value, and the stress direction is 

defined by the assumed proportions of 60% and 40% for loads 1 and 2 respectively. 

proposed efficient sampling approach was illustrated in chapter 2, the stratified sampling 

only in the univariate space of total system load to identify the boundary region as 

2 and importance sampling is performed to bias the sampling towards this 

Boundary identification within sample space of operating points shown in 2

n reality the individual loads may vary along multiple stress directions

the single stress direction may result in sampling too narrowly.

, which shows an operating parameter space for a three-load power system (and therefore 

dimensional figure). As discussed previously, sampling from a single stress direction 

stress direction) will result in a collinear set of points within the 3

is assumed to be distributed normally about its mean value, and the stress direction is 

defined by the assumed proportions of 60% and 40% for loads 1 and 2 respectively. So as the 

tified sampling is 

he boundary region as 

2 and importance sampling is performed to bias the sampling towards this 

 

Boundary identification within sample space of operating points shown in 2-D 

n reality the individual loads may vary along multiple stress directions, and 

too narrowly. Consider Fig. 

load power system (and therefore 

dimensional figure). As discussed previously, sampling from a single stress direction 

collinear set of points within the 3-D 
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figure, as shown by the line with red circles in Fig. 3.3. However, there may exist other 

operating points in the sample space, close to but not on the expected stress direction line, 

that are reasonably likely to occur compared to the points on the red line. For example, we 

may conceive of a region surrounding the expected stress direction line that contains points 

comprising a 0.95 probability space, i.e., the probability of occurrence of an operating 

condition outside that region is 0.05. Such a region is conceptualized in the three-

dimensional picture of Fig. 3.3 as the “cylinder” confined by the two red dashed lines. The 

limits that define the boundary (between acceptable/unacceptable domains) would then 

become a surface cutting through this cylinder, as illustrated by the green surface in Fig. 3.3.  

 

Fig. 3.3 Prospective boundary region in 3-D operating parameter sample space 
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Through the stratified sampling stage we would want to obtain the boundary region 

depicted by the 3D purple region in Fig. 

to sample points within this boundary region, which would capture maximum informat

content including the relative likelihood of sample points.

The same concept can be illustrated as a 2

below. Even though the points seem to be following a single primary stress pattern, there are 

other sample points in the multivariate space that would be within a defined probability 

space. So it is important to 

boundary region effectively, and capture high information content

direction assumption will identify only some portion of boundary, and consequently the 

derived from such a database may face challenges when applied to realistic operating 

conditions, where we could expect loads to follow any stress pattern.

Fig. 3.4 Prospective boundary region in 
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Through the stratified sampling stage we would want to obtain the boundary region 

depicted by the 3D purple region in Fig. 3.3. Then the importance sampling could be applied 

to sample points within this boundary region, which would capture maximum informat

content including the relative likelihood of sample points. 

The same concept can be illustrated as a 2-Dimensional example, depicted in Fig. 

below. Even though the points seem to be following a single primary stress pattern, there are 

points in the multivariate space that would be within a defined probability 

So it is important to consider the multivariate distribution of loads to capture the 

boundary region effectively, and capture high information content. Otherwise,

direction assumption will identify only some portion of boundary, and consequently the 

a database may face challenges when applied to realistic operating 

conditions, where we could expect loads to follow any stress pattern. 

Prospective boundary region in 2-D operating parameter sample space

Through the stratified sampling stage we would want to obtain the boundary region 

. Then the importance sampling could be applied 

to sample points within this boundary region, which would capture maximum information 

Dimensional example, depicted in Fig. 3.4 

below. Even though the points seem to be following a single primary stress pattern, there are 

points in the multivariate space that would be within a defined probability 

consider the multivariate distribution of loads to capture the 

Otherwise, single stress 

direction assumption will identify only some portion of boundary, and consequently the rules 

a database may face challenges when applied to realistic operating 

 

D operating parameter sample space 
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Therefore, it is necessary to capture inter-load correlations from historical information 

while sampling from multivariate load distribution to create the training database, where such 

finer details will have crucial impact in a decision tree’s ability to find rules suitable for 

realistic scenarios. While we can be assured of more information content, it is likely to 

increase computing requirements; especially for boundary identification stage using stratified 

sampling. Dobson et. al. [70] proposed a direct and iterative method to find the closest 

voltage collapse point with reduced computation in the hyperspace defined by loads. But the 

method’s applicability to a specific distribution of loading conditions in the hyperspace was 

not shown, and doubts were also cast over its applicability to a large power system with 

dimension of the hyperspace going in 100s as we are dealing in this dissertation. In this 

chapter, we propose Monte Carlo simulation based method to find the stability boundary in a 

multivariate load state space at a highly reduced computational requirement. The reduction in 

computational cost is possible by the use of Latin hypercube sampling (LHS) of homothetic 

stress directions and linear sensitivities. The multivariate load state space for a given 

historical distribution is then quickly characterized, under various combinations of SVC and 

generator unavailability states. Then, we apply importance sampling to bias the sampling 

towards the identified boundary region.  

In this study, we propose to model inter-load correlations in Monte Carlo simulation 

using copulas [71], unlike many studies that approximate the inter-load correlations using 

multivariate Normal distribution for computational purposes. Copulas are generated based on 

non-parametric historical load distribution, and it enables sampling realistic scenarios. The 

proposed method is envisioned to reduce the computational cost, while producing training 
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database with high information content that enables deriving operating rules with better 

knowledge of boundary limits, leading to higher classification accuracy, and economic rules. 

The remaining parts of this chapter are organized as follows. Section 3.3 presents the 

technical approach, section 3.4 presents the application results of the proposed method in a 

voltage stability assessment for French power system, and section 3.5 concludes. 

3.3 TECHNICAL APPROACH 

The efficient sampling algorithm proposed consists of two stages, stage I to 

approximately identify the boundary region and stage II to bias the sampling towards the 

boundary region as shown in Fig. 3.5. 

 

Fig. 3.5 Proposed efficient sampling algorithm   

3.3.1 Stage I - Identification of Boundary Region 

A straight forward way to perform state space characterization is to divide the N-

dimensional hypercube, where N is the number of selected operating parameters, into M 

smaller hypercubes, select the center point of each of the M smaller hypercubes and perform 

an assessment to identify post-contingency performance (NM contingency simulations), as 

Database 
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described in chapter 2. But for large N, there is a curse of dimensionality, resulting in very 

large computational cost. So this section develops a Latin Hypercube sampling method that 

uses linear sensitivity information to apply the developed efficient sampling approach in a 

computationally effective manner. 

3.3.1.1 Fast Boundary Region Identification using Linear Sensitivity Information 

For some performance measures, it is possible to use linear sensitivities to efficiently 

obtain improved approximation of the boundary between acceptable and unacceptable 

performance, as shown in Fig. 2.4 by the dotted line. This significantly reduces the 

computation burden in characterizing a multi-dimensional operational parameter state space. 

For voltage stability related problems, voltage stability margin (VSM) can be used as the 

performance measure and hence voltage stability margin sensitivities [72, 73, 74] with 

respect to operational parameters such as individual loads (∂VSM/∂Pj), generator availability, 

etc. can be used to identify the boundary. 

Voltage Stability Margin:  Voltage stability margin is defined as the amount of 

additional load in a specific pattern of load increase (also termed as stress direction) that 

would cause voltage instability as shown in Fig. 3.6. It is computed using the continuation 

power flow (CPF) method. Contingencies such as unexpected component outages (generator, 

transformer, transmission line etc.) in an electric power system often reduce the voltage 

stability margin [75, 76], and may cause the voltage stability margin to be negative (i.e. 

voltage instability) if they are severe. Figure 3.6 shows the voltage stability margin under 

different operating conditions.  
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Fig. 3.6 Voltage stability margin under different conditions [77] 

Voltage Stability Margin Sensitivity: The sensitivity of voltage stability margin refers 

to how much the stability margin changes for a small change in system parameters such as P 

and Q bus injections, regulated bus voltages, Bus shunt capacitance, Line series capacitance 

etc. It is computed as a by-product of the CPF computation to find the voltage collapse point, 

where the eigenvalues of the jacobian at the critical collapse point would give these linear 

sensitivities. Sensitivity computations have been typically used for two major purposes, 

contingency ranking and evaluating control action effectiveness [78]. 

Continuation Power Flow and sensitivity computation: Let the steady state of the 

power system satisfying a set of equations in the vector form be, 

( , , ) 0F x p λ =                                     (3.1) 

where, x is the vector of state variables, p is any parameter in the power system steady state 

equations such as demand and base generation or the susceptance of shunt capacitors or the 
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reactance of series capacitors, the state vector, and λ denotes the system load/generation level 

called the scalar bifurcation parameter. The system reaches a state of voltage collapse, when 

λ hits its maximum value (the nose point of the system PV curve), and the value of the 

bifurcation parameter is equal to λ*. For this reason, the system equation at equilibrium state 

is parameterized by this bifurcation parameter λ as shown below.  

0(1 )li lpi liP K Pλ= +                                          (3.2) 

0(1 )li lqi liQ K Qλ= +                                          (3.3) 

0(1 )gj gj gjP K Pλ= +                                          (3.4) 

where, Pli0 and Qli0 are the initial loading conditions at the base case corresponding to 

λ=0. Klpi and Klqi are factors characterizing the load increase pattern (stress direction). Pgj0 is 

the real power generation at bus j at the base case. Kgj represents the generator load pick-up 

factor.  

When system parameters are changed, the total transfer capability will probably increase 

or decrease. Reference [79] explains margin sensitivity in the framework of DAE 

formulation, 

),,( pyxFx =
•

                                            (3.5) 

),,(0 pyxG=                                             (3.6) 

where x are the state variables 
n

Rx∈  ; y are the algebraic variables 
m

Ry∈ ; p are the 

independent variables or parameters 
l

Rp∈  ; f are the differential equations 

nlmn

RRRRf →**:  ; and g are the algebraic equations 
mlmn

RRRRg →**: . 
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where w are the left eigenvectors of the Jacobian at the nose point.  

Once P∂∂λ  is computed, we will first get the bifurcation parameter estimation as 

P
P
∆

∂
∂
=∆
λ

λ                                              (3.8) 

For a power system model using ordinary algebraic equations, the bifurcation point 

sensitivity with respect to the control variable pi evaluated at the saddle-node bifurcation 

point is 

* **

* *
ip

i

w F

p w Fλ

λ∂
= −

∂
                                             (3.9) 

where w is the left eigenvector corresponding to the zero eigenvalue of the system 

Jacobian Fx, Fλ is the derivative of F with respect to the bifurcation parameter λ and 
ipF  is the 

derivative of F with respect to the control variable parameter pi. 

This margin sensitivity gives the first order partial derivative in the Taylor series 

expansion of λ  as a nonlinear function of P, which describes the hypersurface∑ . The 

bifurcation parameter sensitivity will allow us to know, when some parameters are varied, 

how the system will move along the hypersurface ∑  in the vicinity of the current instability 

point denoted by*λ . 

The voltage stability margin can be expressed as [77] 

* *
0 0

1 1 1

n n n

li li lpi li
i i i

M P P K Pλ
= = =

= − =∑ ∑ ∑                             (3.10) 
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The sensitivity of the voltage stability margin with respect to the control variable at 

location i, Si, is                                          

*

0
1

n

i lpi li
ii i

M
S K P

p p

λ

=

∂ ∂
= =
∂ ∂ ∑

                                 (3.11) 

The discussed concept is depicted in Fig. 3.7. 

 

Fig. 3.7 Transfer margin change with the change of parameter, p [79] 

 The voltage stability margin and its sensitivity is computed using continuation power 

flow (CPF)  method [80], as conventional power flow methods do not give any solution at 

the critical point due to singularity of power flow jacobian. In continuation method, the 

system equation at equilibrium state is parameterized by this bifurcation parameter λ, which 

is the scalar bifurcation parameter that parameterizes the load level. The system reaches a 

state of voltage collapse, when λ hits its maximum value (the critical point of the system PV 

curve as shown in Fig. 3.7), and the value of the bifurcation parameter is equal to λ*, which 

gives the corresponding maximum loadability and hence the stability margin M. The 

bifurcation parameter sensitivity Sp with respect to control parameter p is obtained as a by-

product of the continuation method. 
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3.3.1.2 Homothetic Stress Directions, Linear Sensitivities and Boundary Identification 

The assumption of a stress direction is important to perform CPF study for identifying the 

voltage collapse point in that direction. The stress direction for performing CPF is defined by 

a particular combination of base load stress factors 
1

n

i i
i

P P
=
∑ , i=1,2…n loads, as defined in 

section 3.2. Figure 3.8 shows the increase of total system load in a particular stress direction 

defined by the combination of three individual loads PL1, PL2 and PL3.  

 

 

Fig. 3.8 Load increase in a particular stress direction 

Such a distribution of stress due to increasing load is known as homothetic distribution of 

load (i.e., load repartition between the nodes same as the base case's intrinsic load factors). 

Figure 3.9 depicts this concept in two dimensional space defined by loads A and B. The line 

LoadA+LoadB=C defines various basecases with different inter-node repartitions among 
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loads A and B for the same baseload C. These basecases define various homothetic stress 

directions in the state space, as shown by the various lines from the origin. 

 

Fig. 3.9 Homothetic stress direction sampling in the load state space 

CPF is performed on these basecases along their intrinsic stress directions as shown in the 

left hand side of Fig. 3.10. This computes the maximum loadability along every stress 

direction, which is consequently translated into boundary limits, {PLmin, PLmax} of total 

system load state space. This limit in the hyperspace is subject to variation due to the 

influence of discrete variables, i.e., SVC and generator unavailability states. The effect of 

these two variables is estimated using margin sensitivities with respect to real and reactive 

power injections along every stress direction, and is given by the equation (3.12), 

∆PL
svc =  Q*

svc . dVSMdQsvc           (3.12) 

where ∆PL
svc is the change in boundary limit in a particular stress direction due to the 

influence of SVC unavailability, Q*svc is the amount of SVC reactive power output at the 

collapse point along that particular stress direction, and dVSMdQsvc is the linear sensitivity of 



www.manaraa.com

56 
 

voltage stability margin with respect to reactive power injection at the SVC node computed 

as a by-product of CPF study in that particular stress direction. 

Finally, the boundary limits in terms of total system load (MW) identified along every 

direction can be translated as a boundary region in the total Brittany load state space 

(univariate distribution as shown in right hand side of Fig 3.10. 

       

Fig. 3.10 Latin hypercube sampling of stress direction in 3-D and boundary identification 

The key in realizing the computational benefit that CPF and linear sensitivity offer lies in 

the way the homothetic stress directions from the historical data are sampled. 

3.3.1.3 Latin Hypercube Sampling of Stress Directions 

Latin Hypercube Sampling (LHS) is very prevalently used in Monte Carlo based 

reliability studies in many fields. LHS of multivariate distribution is performed by dividing 

every variable forming the multivariate distribution into k equiprobable intervals, and 

sampling once from each interval of the variable. Then these samples are paired randomly to 

form k random vectors from the multivariate distribution. Figure 3.11 depicts the stratified 

sampling in both forms, traditional and LHS, where the difference is in the pairing process. 

Total Load PLmin PLmax 
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In the traditional stratified sampling, samples from every interval of variable 

every other samples from all intervals of variable 

interval of variable i is paired only once with any one of the sample from an interval of 

variable j. The pairing in LHS can also be done in such a way as to account for the mutual 

correlation of the variables by 

dependence structure of the multivariate distribution.

 

                                (a)                                                                      (b)

Fig. 3.11 

Similarly, LHS of homothetic stress directions is performed by dividing every stress 

factor variable obtained from historical data into 

modification to traditional LHS that partition

from each interval of the variable, and pairing them preserving their rank correlation,

k homothetic stress directions.

The range of every stress factor variable and their mutual correlation are obtaine

the historical data. Figure 
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In the traditional stratified sampling, samples from every interval of variable 

every other samples from all intervals of variable j; whereas in the LHS, one sample from an 

is paired only once with any one of the sample from an interval of 

. The pairing in LHS can also be done in such a way as to account for the mutual 

correlation of the variables by preserving their rank correlation [81], and hence capturing the 

pendence structure of the multivariate distribution. 

         

(a)                                                                      (b) 

 Stratified sampling - (a) traditional, (b) LHS 

LHS of homothetic stress directions is performed by dividing every stress 

factor variable obtained from historical data into k equidistant intervals (i.e., equal width; a 

modification to traditional LHS that partitions into equiprobable intervals), 

from each interval of the variable, and pairing them preserving their rank correlation,

homothetic stress directions.  

nge of every stress factor variable and their mutual correlation are obtaine

Figure 3.12 shows a typical stress factor matrix D 

In the traditional stratified sampling, samples from every interval of variable i is paired with 

; whereas in the LHS, one sample from an 

is paired only once with any one of the sample from an interval of 

. The pairing in LHS can also be done in such a way as to account for the mutual 

, and hence capturing the 

 

LHS of homothetic stress directions is performed by dividing every stress 

equidistant intervals (i.e., equal width; a 

into equiprobable intervals), sampling once 

from each interval of the variable, and pairing them preserving their rank correlation, to form 

nge of every stress factor variable and their mutual correlation are obtained from 

stress factor matrix D obtained using 
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historical data, where each row holds the stress factors of individual loads 

historical operating condition. 

comprised of various vectors of individual load stress factors, 

correlation. So LHS is employed to sample 

provide us the required stress directions

 

Fig. 3.12 Stress direction defined in terms of stress factors

Figure 3.13 shows (a) traditional stratified sampling and (b) LHS of homothetic stress 

directions in 3-dimensional state space. In the case of LHS, for 

irrespective of state space size the uniform stratification of stress direction is achieved with 

samples; compared to stratified sampling that produces 

dimension, in a state space of dimension 

fashion until there is no improvement in the boundary limits. Hence computation to 

boundary region can be decreased drastically by using the proposed 

stress directions and linear sensitivities.
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, where each row holds the stress factors of individual loads 

historical operating condition. The matrix D is in the form of a multivariate distribution 

comprised of various vectors of individual load stress factors, which also 

So LHS is employed to sample random vectors of correlated stress factors 

provide us the required stress directions. 

Stress direction defined in terms of stress factors 

shows (a) traditional stratified sampling and (b) LHS of homothetic stress 

dimensional state space. In the case of LHS, for k intervals per dimension, 

irrespective of state space size the uniform stratification of stress direction is achieved with 

samples; compared to stratified sampling that produces kn-1 samples for 

dimension, in a state space of dimension n. The ideal number of k is found in an incremental 

fashion until there is no improvement in the boundary limits. Hence computation to 

boundary region can be decreased drastically by using the proposed method based on 

near sensitivities.  

, where each row holds the stress factors of individual loads for a particular 

tivariate distribution 

which also provides mutual 

stress factors that 

 

 

shows (a) traditional stratified sampling and (b) LHS of homothetic stress 

intervals per dimension, 

irrespective of state space size the uniform stratification of stress direction is achieved with k 

samples for k intervals per 

is found in an incremental 

fashion until there is no improvement in the boundary limits. Hence computation to find the 

method based on LHS of 
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a) Traditional stratified sampling 

 
 

b) Latin hypercube sampling 

Fig. 3.13 Sampling homothetic stress directions for boundary identification 

 

LOAD 1 

LOAD 2 

LOAD 3 

LOAD 1 

LOAD 2 

LOAD 3 
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3.3.2 Stage II – Sampling 

As explained in chapter 2, the property of importance sampling to bias the sampling 

using an importance function g(x) towards the area of interest h(x) is used in our method to 

generate influential operating conditions from load state space X with density f(x). So given 

S, the identified boundary region, the importance sampling distribution g(x) in general can be 

constructed as shown in equation (2.7). In the multivariate case, sampling techniques such as 

copulas or LHS or sequential conditional marginal sampling (SCMS) [71, 82] is used to 

generate correlated multivariate random vectors from non-parametric distributions )(1 xf  and
 

)(2 xf . The SCMS method is time consuming and requires a lot of memory usage for storing 

the entire historical data, while LHS and copulas are relatively faster and consume less 

memory since they work only with non-parametric marginal distributions and correlation 

data. We use copulas for their simpler and elegant approach in handling any non-parametric 

marginal distributions and inter-dependencies. Setting p=0.75, 75% of the points is expected 

from N-dimensional boundary region S, as the probability distribution is altered to produce 

more samples from S. Figure 3.14 depicts the probability reorientation by importance 

sampling process towards the boundary region in a 2-dimensional state space. Again, p 

serves as a sliding parameter that controls the extent of biasing between a completely 

operational study with p=1 to investment planning study with p=0, as observed in chapter 2. 
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Fig. 3.14 Importance sampling scales up boundary region probability

3.4.1 Study Description 

The proposed efficient multivariate load data processing approach will be illustrated in

study similar to chapter 2, i.e., a 

operating rules against voltage stability issues on SEO region (

West France, Brittany). The following study specifications remain the same as the previous 

study in chapter 2: 

1. The basecase of SEO network considered corresponds to 2006/2007 winter with 

13500 MW baseload.

2. The most constraining contingency is the Cordemais busbar fault in the Brittany area 

that leads to trip nearby group of generation units.

3. Random sampling to gene

parameters, i.e., the SEO load, SVC unavailability and generator group unavailability 

in Brittany area. 

LOAD A 

 S 

f(x) 
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Importance sampling scales up boundary region probability

3.4 NUMERICAL RESULTS 

multivariate load data processing approach will be illustrated in

study similar to chapter 2, i.e., a decision tree based security assessment study for deriving 

operating rules against voltage stability issues on SEO region (Système Eléctrique Ouest

. The following study specifications remain the same as the previous 

The basecase of SEO network considered corresponds to 2006/2007 winter with 

13500 MW baseload. 

The most constraining contingency is the Cordemais busbar fault in the Brittany area 

that leads to trip nearby group of generation units. 

Random sampling to generate various basecases is performed on the same set of 

parameters, i.e., the SEO load, SVC unavailability and generator group unavailability 

LOAD B 

LOAD A

 

g(x) 

 

Importance sampling scales up boundary region probability  

multivariate load data processing approach will be illustrated in a 

sion tree based security assessment study for deriving 

Système Eléctrique Ouest, 

. The following study specifications remain the same as the previous 

The basecase of SEO network considered corresponds to 2006/2007 winter with 

The most constraining contingency is the Cordemais busbar fault in the Brittany area 

rate various basecases is performed on the same set of 

parameters, i.e., the SEO load, SVC unavailability and generator group unavailability 

LOAD A  
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4. The sampling laws for the 5 generation units and 2 SVCs remain the same. 

5. The simulation parameters, contingency event time, and criteria for labeling scenarios 

based on post-contingency performance etc., all remain the same. 

The major contribution of this study is the consideration of non-parametric nature of 

multivariate distribution of the system load, with its mutual correlation or inter-load 

dependency structure preserved, in the efficient Monte Carlo sampling stage. 

3.4.2 Data Preparation 

As presented in chapter 2, the historical load data during the daytime of winter period 

(December to February months) between 8hr to 22hr will be used for this study. The 

multivariate load distribution is comprised of 640 load buses, out of which the data for about 

20 load buses were missing completely. While there are maximum likelihood estimation 

methods such as EM (Expectation Maximization) to iteratively estimate missing or 

incomplete data, we have used system specific information, i.e., the missing load’s 

proportion to other available loads in the basecase, to estimate the missing load data in the 

historical records. The following steps explain the method: 

Step 1: The ratios of unknown loads (Nun) to all other known loads (N - Nun) in the 

basecase are calculated; This is refined by including only those known loads that have 

physical relationship with the unknown loads, such as common control area, region, or 

any other information that can be obtained from the system experts 

Step 2: For a particular historical record, the unknown value of a particular load is 

estimated with respect to every known load values according to the basecase ratio 

obtained in step-1. Then the average of all the estimates is considered as the estimation of 

the unknown load value for that particular historical record. The same is repeated for 
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every other unknown load values in that historical record. 

Step 3: Step 2 is performed for all the missing load values of every historical records. 

The reactive power values of the loads are estimated by maintaining the power factor 

value constant (i.e., basecase power factor). Once the entire historical data consisting of 640 

loads is available, the two-stage efficient sampling process can be performed to generate 

influential operating conditions from the multivariate distribution.  

3.4.3 Efficient Sampling of Load Parameter 

The proposed efficient sampling method is used to generate samples from the 

multivariate load distribution obtained from projected historical data. 

3.4.3.1 Stage-I: Fast Boundary Region Identification 

Performance Measure and Linear sensitivities: The boundary region identification 

process requires sampling homothetic stress directions using LHS method. The continuation 

power flow is performed along various stress directions to compute the voltage stability 

margin, and the computed linear sensitivities are used to estimate the stability margin under 

the influence of discrete parameter variation. It should be noted that, though actual criteria 

for declaring a scenario as post-contingency acceptable or unacceptable in the dynamic 

simulation was based on bus voltage lower limit and simulation convergence status, in the 

stage of boundary identification stage we propose to use voltage stability margin (which is 

usually considered as static performance index). Figure 3.15 shows the result of a simulation 

study performed to validate the above study specification of using voltage stability margin 

criteria to find the boundary region with respect to voltage collapse, while in the actual 

dynamic simulation the voltage collapse criteria are different. So two simulation studies were 
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performed on several operating conditions sampled along the most likely stress direction 

used in chapter 2: 

1. Dynamic simulation using the ASTRE software 

2. Voltage stability margin computation using ASTRE 

The left hand side of the Fig. 3.15 shows the relationship between the two performance 

indices, i.e., whenever the simulation doesn’t converge before the final time of 1500s, the 

voltage stability margin computed is less than 0; and whenever the simulation does converge 

at the final time of 1500s, the voltage stability margin computed is greater than 0.  

 

 

Fig. 3.15 Voltage stability margin as performance index for fast boundary identification 

So the following criterion is used to identify the boundary region in the total Brittany 

load state space, i.e.,  

IF VSM≤0, THEN voltage collapse � Unacceptable post-contingency performance  

IF VSM>0, THEN NO voltage collapse � Acceptable post-contingency performance 

The right hand side of Fig. 3.15 shows the boundary region identified using VSM to be 

between the same total load limits as was identified in chapter 2 using dynamic simulation 
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convergence criteria, i.e., 11860 MW and 12600 MW. Hence this corroborates our choice of 

using VSM and its linear sensitivities to identify the boundary region in the multivariate load 

state space. 

A dynamic simulation study in ASTRE software is performed to identify the voltage 

stability margin along a stress direction. This computes the collapse point with respect to 

load increase quickly, as it is a post-contingency process as shown by Fig. 3.16. Unlike the 

pre-contingency process (left hand side of Fig. 3.16) of performing contingency analysis at 

every step of system load increase in a particular stress direction and then identify the 

stability margin at collapse point, post-contingency process of applying contingency and 

increasing the load until the simulation diverges due to voltage collapse gives the stability 

margin faster. 

 

 

Fig. 3.16 ASTRE simulation options for computing voltage stability margin 

Then the power flow jacobian J* at the collapse point is used to compute the linear 

sensitivities of VSM with respect to real and reactive power injections, by computing the 

sensitivity of lowest-voltage bus at the instance of collapse with respect to power injections 
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at all other nodes [83]. Figures 3.17 and 3.18 show the 400 KV and 225KV voltage results 

respectively from an ASTRE margin identification simulation done along a particular stress 

direction on a particular operating condition. The Cordemais bus bar fault was applied at 

900s of simulation, and after post-contingency simulation reaches 1500s, the total system 

load is ramped up at a certain %MW/s along a particular homothetic stress direction 

considered (i.e., the intrinsic stress direction of the base operating condition under 

consideration) until the simulation diverges.  

 

 

Fig. 3.17 Voltage plots for every 400KV buses 

It is noted that the ASTRE simulation diverges at t=1750 s when voltage collapse occurs. 

The linear sensitivities are computed within ASTRE at this juncture. Likewise, for every 

sampled stress direction the process of computing voltage stability margin and linear 

Cordemais bus 
bar fault -T=900s 

Time Load increase 
From t=1500 to the end of the simulation 
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sensitivities is be repeated in ASTRE. The margin search and sensitivity computation in 

ASTRE is not as same as the conventional CPF study explained in section 3.3.1, which uses 

parameterization of system state equations and performs predictor and corrector 

functionalities iteratively. The boundary identification can also be performed using any other 

software that finds the bifurcation point and linear sensitivities. 

 

Fig. 3.18 Voltage plots for every 225KV buses 

 

Boundary Identification:  There are 24 combinations of discrete parameters (SVC and 

generator unavailability) as shown in Table 3.1. For the first combination in Table 3.1, with 

no component unavailability, initial basecases are formed based on the sampled k homothetic 

stress directions. Then CPF is performed to characterize the load state space with respect to 

post-contingency performance measure and the boundary limits of total SEO load, {PL
SEO

min, 

Cordemais bus 
bar fault -T=900s 

Time Load increase 
From t=1500 to the end of the simulation 

 



www.manaraa.com

68 
 

PL
SEO

max} are found, which is {11627, 12700} MW as shown in Table 3.1. Table 3.2 shows 

the process of estimating k for LHS in an incremental fashion. Beyond k=15, the boundary 

region is identified fairly consistently.  

Table 3.1 Boundary identification under discrete combinations 

 

The voltage stability margin sensitivities are computed along every k stress directions for 

the basecases with first component combination of Table 3.1. The sensitivities are used to 

estimate the change in boundary limits due to the influence of component combination 

change. Table 3.1 also shows the estimated boundary limits for all the remaining 



www.manaraa.com

69 
 

combinations. The final boundary region limits are estimated as 11446 MW (min(PL
SEO

min)) 

and 12700 MW (max(PL
SEO

max)). 

Table 3.2 Incremental estimation of k 

k PL
SEOmin PL

SEOmax boundary gap 

5 12500 12700 200 
8 11627 12500 873 
12 12000 12700 700 
15 11627 12700 1073 
20 11627 12650 1023 
25 11627 12700 1073 

 

Figure 3.19 shows the boundary characterization in terms of total SEO load, obtained 

from a simulation performed for 24000 random basecases formed by projected historical load 

data and all combinations of discrete parameters. This result verifies the ability of the 

proposed method to estimate boundary region approximately at a highly reduced computing 

requirements (i.e., only about 20 CPF and linear sensitivity computations) in a multivariate 

parameter state space defined by loads and component unavailability states.  

 

Fig. 3.19 Boundary characterization in total SEO load state space 
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3.4.3.2 Stage-II: Importance Sampling 

Many MCS studies in the past have assumed a multivariate normal distribution of load 

data [7]. But in our study, we perform importance sampling on actual empirical non-

parametric distribution obtained from the projected historical data of loads. Figure 3.20 

shows three marginal load distributions among the 640 load vectors that make up the 

multivariate historical data. It is seen that the multivariate distribution is made up of marginal 

distributions that are not exactly normal, but by visual inspection some looks close to normal, 

some uniform, some discrete and so on. So a multivariate Normality assumption may give 

misleading results.  

 

Fig. 3.20 Some sample marginal distributions from historical load data 

Furthermore, these marginal distributions are not independent to model them separately 

as a group of normal, uniform and discrete distributions respectively and sample; but they are 

mutually correlated, and the sampling method must preserve their inter-dependencies or 

correlations while sampling. The whole sampling task becomes even more challenging, 

considering the non-parametric nature of the marginal distributions. Therefore, as mentioned 

in section 3.3.2, copulas are used that could efficiently work with multiple non-parametric 

marginal distributions and their mutual correlation (rank correlation) to produce correlated 
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multivariate random vectors from original multivariate distribution defined by empirical 

historical data. 

After identifying the boundary region limits, the empirical multivariate distribution of 

boundary region f1(x) is begotten from historical data by filtering the records within the 

identified boundary limits. When p = 1 in equation (2.7), we have complete sampling bias 

towards the boundary region f1(x). The inter-dependencies between various individual loads 

are captured in the sampling process by using copulas, and correlated multivariate random 

vectors from f1(x) are generated. The generated samples are for real power values only, and 

the reactive power at the corresponding individual load buses are obtained by maintaining the 

power factor constant. Figure 3.21 shows the operating conditions sampled in terms of real 

and reactive load power values from the multivariate boundary region, which is fed as input 

to ASSESS in the form of a text file. 

 

Fig. 3.21 Brittany load samples generated from boundary region importance function g(x) 
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3.4.4 Results 

3.4.4.1 Best Rule Attribute  

The training database was generated from the boundary region containing 2852 operating 

conditions. The test database includes 1976 independent instances, 824 unacceptable and 

1152 acceptable cases, covering a wide range of operating conditions unseen by training 

database. Attribute set “400 KV” contains 46 400KV node voltages, “225 KV” contains 102 

225KV node voltages, “P res” contains 10 generator group’s and total SEO real power 

reserve, “Q flow” contains various attributes such as 12 400KV tie line reactive flows from 

SEO region to other regions, 4 inter-area 400KV reactive transfers, and net reactive power 

export; and “Q res” contains 10 generator group’s and total SEO (includes SVCs) reactive 

reserve. Table 3.3 shows the effectiveness of various attribute sets in terms of classification 

accuracy and error rates. 

Table 3.3 Attribute set selection 

Attribute Set Accuracy False 
alarm 

Risk Tree size 

400 KV + Q res 87.9079 0.193 0.073 15 
Q res 87.7159 0.183 0.083 15 

225 KV 82.8215 0.243 0.124 15 

400 KV + 225 KV 82.7255 0.253 0.12 15 

400 KV +225 KV + Q res 82.6296 0.236 0.132 13 
All 82.6296 0.236 0.132 13 
225 KV + Q res 82.4376 0.231 0.139 13 
400 KV 80.8061 0.231 0.166 17 
Q flow 75.5278 0.325 0.191 23 
P res 73.8004 0.402 0.169 13 

 

Accuracy is defined as the percentage of points correctly classified, false alarm rate is 

defined as the ratio of total misclassified unacceptable instances among all unacceptable 
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classifications, and risk rate is defined as the ratio of total misclassified acceptable instances 

among all acceptable classifications. The attribute set “400KV + Q res” proves to be a good 

attribute with lowest risk and high classification accuracy. It has to be noted that the accuracy 

listed in the Table 3.3 are for trees that are pruned by restricting the minimum number of 

instances per leaf node. On top of this, other dimensionality reduction and attribute selection 

methods such as principle component analysis, filters and wrappers etc [18], which are very 

prevalently used in many studies may be employed. 

3.4.4.2 Effect of Bias Factor p  

Computation, Accuracy and Tree Size: Table 3.4 shows the results when validated using 

the test database, which confirms that as the sampling of operating conditions is biased 

towards the boundary region, the entropy of the database increases (a quantitative indicator 

of information content) and even with lesser database size higher accuracy for decision tree is 

obtained, also shown in Fig. 3.22. The error rates, namely false alarms and risks are both 

simultaneously reduced to a great degree. 

 

Table 3.4 Performance based on sampling bias 

P Size Entropy Accuracy False Alarm Risk 

Base 17748 0.7423 92.51 0.063 0.091 
0.25 13840 0.7716 93.4211 0.064 0.068 
0.50 9932 0.8181 94.9899 0.049 0.051 
0.75 6025 0.9038 96.0526 0.038 0.041 
1.0 2852 0.9993 97.5202 0.021 0.03 

 

It was also found that as the sampling is biased more towards the boundary region, the 

size of the decision tree required for good classification also decreases. This is due to the 
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ability of database to capture high information content (i.e., the variability of performance 

measure across the security boundary) even with smaller number of instances. 

 

 Fig. 3.22 Information content vs. accuracy and computation  

Economically beneficial rules: Table 3.5 presents the influence of efficient sampling on 

the operational rule’s ability to provide economic benefit.  

Table 3.5 Economic benefit from efficient sampling 

Top Node p = 0 p = 1 

Cordemais voltage  401.64 KV 399.88 KV 
Domloup voltage  397.56 KV 394.51 KV 
Louisfert voltage 399.1 KV 396.46 KV 
Plaine-Haute voltage 392.26 KV 387.21 KV 
Chevire unit reactive reserve 131.38 MVar 90.76 MVar 
Chinon unit reactive reserve 1127.54 MVar 694.62 Mvar 
Cordemais unit reactive reserve 70.97 MVar 16.23 Mvar 
Total SEO region reactive reserve 7395.88 MVar 6510.36 Mvar 
Plaine-Haute SVC output 11.82 MVar 13.64 MVar 
Poteau-Rouge SVC output 16.3 MVar 22.03 MVar 
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The Table 3.5 shows that for the various possibilities of the decision tree’s top node 

among the most influential attributes, the database generated within boundary region with 

p=1 finds rules with attribute thresholds that are always less conservative than from the 

database generated with p=0, i.e., from entire operational state space. Figure 3.23 shows 

operational rule formed using two attributes, namely reactive reserves at Chevire unit and 

Chinon unit respectively.  

 

Fig. 3.23 Economical benefit of operational rules from efficient sampling 
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The operating conditions shown in the Fig. 3.23 are from the entire database. It can be 

noticed that the rules formed using the database exclusively from the boundary region is 

providing more operating conditions to be exploited in real time situations, than the rule 

derived using the database from entire region; because of the increased knowledge and 

clarity of boundary limits. 

3.4.4.3 Sampling Strategies Comparison  

Table 3.6 shows the comparison results of different sampling approaches, namely,  

1. Uniform sampling of boundary region in the load state space defined along the most 

likely stress direction. 

2. Importance sampling of boundary region in the load state space defined by the most 

likely stress direction. 

3. Importance sampling of boundary region in the multivariate normal (MVN) load 

distribution (pruned). 

4. Importance sampling of boundary region in the correlated non-parametric multivariate 

load distribution (MVD) (tree pruned). 

5. Same as case 4, with tree un-pruned. 

 

Table 3.6 Comparison between different sampling strategies 

Sampling Strategy Size Accuracy False 
Alarm 

Risk 

1. Unif (single stress) 952 56.0729 0.684 0.097 

2. IS (single stress) 800 63.5628 0.595 0.041 

3. IS (MVN - pruned) 2879 80.6142 0.142 0.228 

4. IS (MVD - pruned) 2852 87.0951 0.094 0.178 

5. IS (MVD) 2852 97.5202 0.021 0.03 
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It can be seen from Table 3.6 that, importance sampling procedure, even assuming a load 

state space along a single stress direction, has better performance in terms of high accuracy 

and low error rates than uniform sampling within boundary. The database produced by 

importance sampling of correlated-MVD state space definitely shows better performance, of 

course with a higher computational cost since sampling includes many stress directions. 

When the trees are pruned for operator’s convenience of usage the accuracy decreases, which 

can be improved using the accuracy-loop as shown in Fig. 2.2. It also performs better than 

sampling from MVN load space, which is conventional assumption in many studies.  

The significance of sampling from correlated-MVD, i.e., capturing the inter-load 

dependencies, than from MVN is even strongly vindicated by Fig. 3.24 that shows the top 5 

critical attribute locations produced by decision trees from respective databases. The 

contingency event is shown by a red star. The location of 5 critical monitoring attributes as 

well as their sequence in the tree matters. Compared to MVN, all the 5 top locations found by 

correlated-MVD sampling strategy are very interesting ones, with the top node being reactive 

reserve at a big nuclear plant Chinon, the node in the next level of the tree is closer to the 

contingency location, the next nodes (3 and 4) in the tree deals with the two SVC locations in 

Brittany and the attribute of node 5 is right at the contingency location. 
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Fig. 3.24 Critical monitoring locations from decision tree: MVD vs. MVN 

3.5 CONCLUSIONS 

The thrust of the proposed sampling procedure is to re-orient the sampling process to 

focus more heavily on points for which post-contingency performance is close to the 

threshold, i.e., boundary region that contains operating conditions influential for rule 

formation. The chapter emphasizes the significance of sampling from non-parametric 

correlated-multivariate load distribution obtained from historical data, which ensures 

selection of attributes from most interesting and relevant locations by decision tree as 

monitoring locations. A Latin hypercube sampling of homothetic stress direction based linear 

sensitivity method is developed for quickly characterizing the multivariate load state space 
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for various combinations of component availabilities, and identify the boundary region with 

respect to post-contingency performance measure. The developed efficient training database 

approach was applied for deriving operational rules in a decision tree based voltage stability 

assessment study on RTE-France’s power grid. The results show that the generated training 

database enhances rules’ accuracy at lesser computation compared to other traditional 

sampling approaches, when validated on an independent test set.  

The developed database generation method will also improve the performance of other 

machine learning classification tools such as SVM, IBk etc. The efficient database generation 

approach can also be applied to other stability problems such as rotor angle stability, out of 

step etc, where performance measure’s trajectory sensitivities will have to be used to reduce 

computational cost. 

This work will have significant benefit to companies owning, operating, or using high 

voltage transmission systems because it will significantly enhance the speed with which 

operational planning and investment planning studies are conducted. Companies not familiar 

with this statistical approach to performing such studies will be interested in the 

demonstration to gauge its applicability to their own needs.  
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CHAPTER 4 DECISION TREE BASED SECURITY ASSESSMENT 

FOR MULTIPLE CONTINGENCIES  

4.1 INTRODUCTION 

In power system reliability assessment studies the system security limits and adequacy 

indices depend on the set of contingencies analyzed. Consequently the final solution strategy 

for short term operational and long term investment planning studies respectively also 

depend on the set of contingencies considered in the planning study. In chapters 2 and 3, the 

decision tree based security assessment was performed for the most constraining contingency 

in Brittany region, which is typically done in many studies. The assumption is that the 

solution strategy or in our case the operational rules for the most constraining contingency 

will also perform well on the contingencies that have lower severity. But this is generally not 

true. In reality, under the highly uncertain nature of power system conditions, the operational 

rules for the most constraining contingency may not be effective for all other contingencies. 

Some contingencies, which are generally less severe, may have pronounced ill-effect during 

certain operating conditions. 

For instance, in Fig. 4.1 let us consider an operating condition state space defined by two 

loads Pload1 and Pload2. Let the two curves (green  and orange curves) on the state space 

indicate the security boundary limits separating the acceptable and unacceptable operating 

conditions with respect to post-contingency system performance for contingencies 1 (C1) and 

2 (C2) respectively. So inducing an operational rule for C1, which is more severe than C2, 

will classify the operating condition P as safe under both the contingencies, while it may not 

be so. Since the proposed efficient database generation approach in chapter 2 is based on 
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P 

1 

sampling operating conditions from the boundary region defined by post-contingency 

performance, now the boundary region has to be defined with respect to multiple 

contingencies. This will ensure sampling the required high information content training data 

for decision tree rule formation applicable to multiple contingencies. Therefore, it is 

important to perform thorough contingency analysis of many contingencies, screen the most 

important ones that may violate reliability criteria and devise effective solution strategies 

[84]. 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Significance of considering multiple contingencies 

So, this chapter focuses on devising efficient methodologies to perform decision tree 

based security assessment against voltage stability phenomenon for many critical 

contingencies and obtain operational rules for every contingencies considered. The two main 

concepts proposed in this chapter for a comprehensive multiple-contingency security 

assessment are risk based contingency ranking and contingency grouping.  
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4.2 MOTIVATION AND PROPOSAL 

4.2.1 Risk Based Contingency Ranking 

In order to reduce the computational burden of contingency analysis, contingency ranking 

methods are typically used in power system reliability assessment studies. They help in 

screening the most critical set of contingencies that are to be thoroughly analyzed. Many 

deterministic ranking methods have been developed for reliability assessment that considers 

the severity of contingencies only [58, 59, 85]. While some studies choose the most severe 

contingency, many screen a credible list of contingencies for planning under a wide range of 

scenarios. But, under the current highly probabilistic nature of power system, a contingency 

ranking method which does not consider the probability of each contingency would lead to 

inconsistent or less effective or even expensive operational solutions strategies. As shown in 

Fig. 4.1, the C2 even though has a moderate impact or severity on system performance still is 

highly probable than C1, so it is important give attention to C2 in the planning study. At the 

same time, there could be some other contingency which has a very severe impact on system 

performance, but is highly unlikely to occur. In that case such contingencies may be 

discounted in the overall planning process, or could be considered as some special case 

independent of overall planning process. Otherwise that one contingency which is very rare, 

if considered with all other contingencies in the planning process may give forth to very 

expensive solution strategy in normal operating situations. So we propose to develop risk 

based contingency ranking process that would eventually help in screening top contingencies 

that may lead to voltage collapse. 

The risk of a contingency over a wide variety of operating conditions is defined as, 

Contingency Risk = Contingency Occurrence Probability X Contingency Severity        (4.1) 
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All the risk based contingency ranking process proposed in open literature has the 

common idea of performing contingency simulations over a wide range of operating 

conditions, and compute a severity function based upon the post-contingency response 

database. Then according to the formula shown in equation (4.1), the risk of the contingency 

is estimated. The same procedure is followed for every other contingency in the selected list, 

and finally ranked. But the methods developed so far have not considered the actual 

probabilistic multivariate distribution of the operating conditions, which may also be non-

parametric, during the stage of Monte Carlo sampling process. The studies so far have also 

not considered the huge computational cost incurred in estimating the risk posed by each 

contingency over many operating conditions. So in this chapter we propose a risk-based 

contingency ranking method that estimates contingency risk for many contingencies over a 

wide range of operating conditions sampled from multivariate probability distribution. The 

proposed method is efficient compared to existing methods in the following, i.e., it has the 

ability to get realistic risk indices for multiple contingencies at a very highly reduced 

computational cost. The risk indices are realistic because we consider the nature of 

probability distribution of operating parameters, i.e., if the operating parameter distribution is 

multivariate normal or it is non-parametric, and efficient methods are developed to address 

both the situations, which has been missing in all the other works. At the same time, even 

after accounting for the multivariate nature of operating condition distribution, the risk 

estimation process is faster as the computation of risk estimation is performed using linear 

sensitivity information. 
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4.2.2 Contingency Grouping 

Once the critical contingencies have been screened using the risk based contingency 

ranking scheme, every screened contingency has to be considered for operational planning. 

Usually, a separate operational rule for every contingency gives the best performance in 

terms of decision rule’s accuracy [60]. So in our study, as shown in Fig. 2.2 we could 

generate high information content database for every screened contingency, and produce 

operational rules using decision trees, i.e., in other words, a separate decision tree for every 

contingency. But this is generally not preferred as it burdens the system operators, who will 

be dealing with too many rules.  

So a global decision tree for many contingencies can be constructed. We could achieve 

this by sampling operating conditions from the boundary regions of every contingency. But 

the global tree can never outperform on its ability to classify all the post-contingency 

situations (i.e., a wider boundary region), when compared to the original separate tree for 

every contingency. Moreover, there is also the danger of reducing the operating rule’s ability 

to perform well under the most constraining and likely contingency, when we group all the 

contingencies together. So generally such global trees require usage of decision tree post-

processing methods [29] or meta-learning methods such as bagging, boosting, stacking of 

many learning methods (i.e., divide the boundary region and conquer) [18] etc. to improve its 

accuracy over the entire domain of boundary region. The problem with these are that they 

usually overfit the decision tree to the particular operating conditions and contingencies 

under consideration, and makes the tree very less effective in classifying rare instances. In 

addition to that, the meta-models do use multiple-trees and voting schemes to classify, and 

thus it makes the decision process complex for the operators to interpret and apply. 
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So we propose a contingency grouping method that would strike a balance between 

producing simple and accurate trees for contingencies, as well as reducing the number of 

trees for multiple contingencies. The idea of grouping components based on specific 

performance criteria is already prevalent in power system, as it reduces computational cost 

for system reliability studies and also provides valuable guidance in decision making. For 

instance, generators are grouped based on their slow-coherency performance which gives 

valuable information in controlling islanding to prevent blackout [86]. Generators are 

grouped based on angle gap criteria for fast contingency screening [87]. Unsupervised 

learning methods are used to group contingencies based on their effect on bus voltages [88]. 

Then Neural Networks are used to predict post-contingency bus voltages under many 

contingencies just by using few representative contingencies, thereby reducing computation. 

Such grouping concepts are also used for designing defense systems, such as UFLS schemes 

[89]. So in this chapter, we propose to group contingencies based on the degree of 

overlapping among post-contingency performances of contingencies over wide range of 

operating conditions. We introduce a graphical index, termed as progressive entropy that 

captures this degree of overlap visually. The progressive Entropy curves are plotted for 

various contingencies over the distribution of operating conditions along any system variable. 

The final decision on the potential grouping indicated by progressive entropy curves will be 

based on the particular group’s common decision tree’s classification performance for all the 

contingencies in that particular group. 
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4.3 TECHNICAL APPROACH 

4.3.1 Risk Based Contingency Ranking 

4.3.1.1 Voltage Collapse Risk of a Contingency 

A simple expression for computing risk of a contingency over many probable operating 

conditions is shown in equation (4.2).
 

Risk(C ) P(C ) P(X |C ) Sev(X |C ))i i j i j i
j

= ×∑            (4.2)  

where,  

• P(Ci) is the probability of the i th contingency Ci. Assuming that this probability is 

determined only by the failure rate of the component that causes that contingency, it 

will be the same for all operating conditions. 

• Xj is the jth possible operating condition, and P(Xj|Ci) is the probability of the 

operating condition given the contingency. 

• Sev(Xj,|Ci) quantifies the severity of the j th possible operating condition in terms of 

some stability criteria, when subjected to i th contingency. 

• ΣP(Xj|Ci) Sev(Xj,|Ci) quantifies the severity of a contingency computed using its 

influence over all the sampled operating conditions, Xj. 

Typically, Poisson distribution is used to describe the occurrence of an event in a 

particular time interval. So given an occurrence rate λ of a contingency in a certain time 

interval, the probability of that contingency happening at least once in that time interval is  

1

P( ) ( ) 1 ( 0) 1 i
i

x

C P x P x eλ
∞

−

=

= = − = = −∑        (4.3)
 

 

where, 
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• λ is the mean number of events during a given unit of time 

• x is the number of occurrence 

The term P(Xj|Ci) in equation (4.2) can be substituted by the probability of performance 

index subject to a contingency, P(PI|Ci) [7]. So for a voltage instability problem, probability 

distributions of performance indices such as maximum loadability (P(Lm|Ci)) or voltage 

stability margin (P(M|Ci)) can be used. Voltage stability margin (M) is defined as, 

mM L System base load= −                     (4.4) 

So, for voltage instability problem equation (4.2) becomes, 

Risk(C ) P(C ) P( |C ) Sev( ,C ))i i j i j i
j

M M= ×∑
      

(4.5) 

The severity function for an operating condition in equation (4.5) is defined by discrete or 

continuous function. Typically, if post-contingency margin is non-positive for a particular 

operating condition, then a voltage collapse will occur. So irrespective of the magnitude of 

non-positive stability margin, we assume that the consequence of voltage collapse is very 

severe and generally unacceptable under any condition. So the severity function of an 

operating condition for voltage collapse is defined as discrete function in equation (4.6). 

1, 0
Sev(M |C ))

0, 0
j

j i
j

if M

if M

≤
=  >         (4.6)

 

Since the discrete severity function is like an indicator function for collapse, I(M≤0), the 

severity function for a particular contingency becomes a probability term, which we refer to 

as the probability of collapse subject to contingency Ci. It is expressed as, 

P( |C ) Sev( |C )) P( |C ) I( 0|C ))

( 0 | C ), '

j i j i j i j i
j j

i j

M M M M

P M X s

× = × ≤

= ≤ ∨

∑ ∑
      (4.7) 



www.manaraa.com

88 
 

Therefore, for the given discrete severity function, risk in equation (4.5) is rewritten as, 

Risk(C ) P(C ) *P( 0)i i M= ≤
        

(4.8) 

So, to estimate risk of a contingency over a wide variety of operating conditions, we must 

estimate probability of collapse, i.e., P(M≤0) in equation (4.8). This is the bottleneck in 

contingency risk estimation (CRE) methods. Typically it is done by contingency simulations 

over various operating conditions produced by Monte Carlo sampling, as in the case of work 

[90] that samples many operating conditions in the multivariate parameter space defined by 

border transactions and system loading conditions. But this is very time consuming, 

especially if it is to be repeated for several contingencies for ranking purposes. Wan et. al [7] 

in their effort to estimate risk of an operating condition with respect to voltage collapse 

proposed utilizing linear sensitivity measures to estimate the performance measure 

(maximum system loadability), which could drastically reduce the computational burden for 

estimating probability of collapse term. But it assumes the loading conditions to follow a 

multivariate normal distribution, which is usually not the case in reality. Furthermore, it 

computes linear sensitivities for only one stress direction, while in reality the multivariate 

loading distribution will have many stress directions.  

In this chapter, we propose a CRE method that considers various stress directions in 

multivariate load distribution, while utilizing the ability of sensitivity measures to reduce the 

computational burden. The LHS method presented in chapter 3 is used to sample various 

homothetic stress directions in the multivariate load parameter state space. We also propose a 

machine-learning based CRE method in order to account for the influence of non-parametric 

nature of multivariate load distribution on risk estimates. 
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4.3.1.2 CRE I: Multivariate Normal Operating Conditions 

Let us consider the uncertainty in operating conditions is represented by system loading 

conditions. The probabilistic nature of system loading conditions is expressed in terms of real 

power of individual loads, xi, that forms a ‘n’ dimensional operational parameter state space 

X following a multivariate normal distribution as shown by equation (4.9).  

X = [x1… xn]
 T ~ ),( 2

xxMVN σµ        (4.9) 

where xµ  is the mean vector [ nxxxx ...,, 321 ]  T representing the mean operating 

condition, and 
2
xσ  is the variance-covariance matrix obtained from historical data. 

Performing a continuation study on mean operating condition along a particular stress 

direction in order to assess the voltage stability under a critical contingency, the maximum 

loadability, Lmµ  and the margin sensitivitiesp
yS  with respect to real and reactive power 

injections at the critical point can be obtained. Using the margin sensitivities maximum 

loadability for many other operating conditions defined by individual load variation can be 

computed as, 

Lm = Lmµ  + p
yS T. (P - pµ )        (4.10) 

where P is the parameter vector, which in our case is individual real power and reactive 

power load at every nodes for various scenarios, given by; 

P = [X   X *rqp] 
T        (4.11)  

where rqp is a diagonal matrix with Q/P ratio at every load node, and X *rqp is the reactive 

power load at every node with a constant power factor. Therefore, P follows a multivariate 

normal distribution, i.e,  
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P ~ MVN ( pµ , 2
pσ )         (4.12) 

where, pµ is the mean parameter vector associated with the mean operating condition for 

which sensitivity information has been found out, and 2
pσ  is the variance-covariance matrix 

associated with the parameter matrix. In general we can also have other parameters such as 

generation dispatch, line reactance, shunt susceptance etc.  

Since equation (4.10) is a linear transformation of multivariate normal random variable, it 

can be proved that Lm also follows a normal distribution [91]. 

Lm ~ N ( Lmµ , p
yS T. 2

pσ . p
yS )         (4.13) 

Voltage stability margin can be defined as,  

M = Lm – ∑
=

n

i
ix

1

           (4.14) 

where  ∑
=

n

i
ix

1

 is the total system load, XTotal. Therefore, 

M = Lmµ  + p
yS T. (P - pµ ) - ∑

=

n

i
ix

1

       (4.15) 

Given X~MVN, ∑
=

n

i
ix

1

 also follows a normal distribution, i.e., sum of normal marginals 

(Central Limit Theorem). 

XTotal = ∑
=

n

i
ix

1

 ~ N (∑
=

n

i

ix
1

, 2
Xtotalσ )        (4.16) 

where ∑
=

n

i

ix
1

 is the sum of mean of each load component (marginal distribution) of X, 2
Xtotalσ

is the variance of XTotal. Now, voltage stability margin M, i.e., performance measure Y, also 

follows a normal distribution. 
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M ~ Y(x) ~ N (( Lmµ -∑
=

n

i

ix
1

),( p
yS T. 2

pσ . p
yS + 2

Xtotalσ ))     (4.17) 

So the probability distribution of performance measure from probability distribution of 

operational parameters can be directly obtained, and P (M≤0) can be computed. Figure 4.2 

illustrates the risk calculation procedure for several contingencies, when we have the 

operating conditions following a MVN distribution. 

It is to be noted that the estimation of Lm using sensitivities in (4.10) will be reliable only 

for the operating conditions along the particular stress direction, di under consideration. So as 

shown in Fig. 4.2 many stress directions are sampled and the probability of collapse is 

evaluated for every single stress direction for a particular contingency, P(collapse|Ci,di). The 

final probability of collapse for a contingency is computed as, 

P(collapse|Ci) = ∑P(di)*P(collapse|Ci,di)      (4.18) 

The degree of variation among all the terms in the above summation is computed and the 

variance is checked to see if a particular contingency poses a high risk along a particular 

stress direction, even though the overall risk considering all the sampled stress directions 

may be low according to equation 4.18. Consequently a separate planning initiative could be 

implemented for that particular contingency along that particular stress direction. 

The probability of  sampled stress directions are computed using k-Nearest Neighbour 

(kNN) classification method, an instance based machine learning classification method [18, 

92, 93]. The following steps are followed: 

1. The training data is composed of sampled stress directions, where each stress 

direction is considered as a separate class (centroid of clusters) and the stress factor 

components are the attributes 
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Fig. 4.2 Risk based contingency ranking with MVN assumption 

2. The testing data is the stress factor matrix D from historical data 



www.manaraa.com

93 
 

3. The kNN classification technique is employed on the training database, and the class 

predictions for the test database is obtained. In other words, each record in historical 

stress facor matrix D is mapped onto a particular sampled svector of stress factor 

using kNN 

4. Step 3 provides proporion of records in matrix D grouped to each centroid of step 1, 

and hence the proability of each sampled stress direction is estimated. 

Finally, according to equation (4.8), the product of probability of contingency and 

severity of contingency (probability of collapse) will give the risk of contingency.  This is 

repeated for every selected contingency, their risks are computed and eventually ranked. 

4.3.1.3 CRE II: Machine-Learning based Risk Estimation 

In section 4.3.1.2, the linear analytical relationship between the operational parameters X 

and the post-contingency system performance Y (maximum loadability) by virtue of using 

linear sensitivities as shown in equation (4.10), directly gave forth the probability distribution 

of post-contingency performance measure for a particular stress direction [7]. This was 

possible since the operational parameter followed a multivariate normal distribution, which is 

amenable to linear transformation.  

For operational parameter with non-normal or any non-standard distribution, which is 

usually the case in reality, it is not possible to directly obtain the probability distribution of 

post contingency performance measure. Therefore Monte Carlo simulation of the operational 

parameter space X has to be performed to produce many operating conditions, and then the 

maximum loadability in each case is computed using equation (4.10). This would give the 

required probability of maximum loadability, which consequently gives the probability of 

performance measure, i.e., the voltage stability margin M. 
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It is to be noted here that all the operating conditions sampled from multivariate 

distribution will not fall in the same stress direction. Hence before using equation (4.10) to 

estimate the post-contingency performance, we need to compute the linear sensitivity 

corresponding to the stress direction of particular operating condition under consideration. 

We can neither afford to compute the linear sensitivities corresponding to the stress 

directions of all the sampled operating conditions, for it is antidissertation to the very purpose 

of reducing computation by using linear sensitivities to estimate performance measure. But 

the fact that operating conditions can be grouped into many clusters based on their proximity 

of stress directions, can be exploited here to reduce the computation and make effective use 

of linear sensitivities to estimate voltage stability margin. This is achieved through machine 

learning techniques.  

Figure 4.3 presents the machine learning based risk index estimation method where linear 

sensitivities computed for few operating conditions are used to estimate the post-contingency 

performance measure under many other randomly sampled operating conditions. A particular 

computed sensitivity is associated with a particular new operating conditions based on their 

intrinsic stress factor vector using kNN classification. So the first task is to sample k 

representative stress directions from the historical data as explained in section 3.3.1.3, for 

which the maximum loadability and sensitivities are computed beforehand. Then when 

several operating conditions are sampled, each one is mapped to a particular stress direction 

among initially sampled k directions using kNN classification method. Hence the 

corresponding sensitivity and loadability values are used in equation (4.10) and the post-

contingency performance measure is estimated for that particular operating condition. 

Likewise, every operating condition is grouped to a particular stress direction, and 



www.manaraa.com

 

accordingly its post-contingency voltage stability m

The probability of collapse in equation (

stability margins for all the 1000 sampled operating conditions, as shown by 

Pr( 0)M Risk of collapse≤ = =

Fig. 4.3 Mapping operating conditions to stress directions using 

95 

contingency voltage stability margin is estimated using equation (4.14).

The probability of collapse in equation (4.8) is computed using the estimated voltage 

stability margins for all the 1000 sampled operating conditions, as shown by 

#( 0)

#
iM

M Risk of collapse
operating conditions

≤
≤ = =    

Mapping operating conditions to stress directions using kNN classification 

argin is estimated using equation (4.14). 

) is computed using the estimated voltage 

stability margins for all the 1000 sampled operating conditions, as shown by equation (4.19). 

(4.19) 

 

NN classification  
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Hence the risk of contingency is estimated. The same is done for other contingencies too, 

and eventually a risk-based contingency ranking is performed. 

4.3.2 Contingency Grouping 

This section explains the proposed progressive entropy based contingency grouping 

concept. This is developed to derive a smaller set of rules with good performance for all the 

screened contingencies. The concept of entropy was discussed in chapter 2, where entropy 

provides a quantitative measure of information content in a database, i.e., the non-

homogeneity level in the class attribute (performance measure) of the database. Here, we 

introduce a new concept, namely progressive entropy, for visualizing the variability in class 

attribute along any power system variable, such as system load level, reactive reserve in an 

area, line flows, generator group reactive reserve etc. 

4.3.2.1 Progressive Entropy 

Progressive entropy is computed as follows: 

Step 1: Sample many operating conditions from the multivariate load distribution 

Step 2: Perform simulation and ascertain the post-contingency performance measure 

Step 3: Stack the performance measure variability along a system variable distribution. 

Figure 4.4 shows the boundary progression in the total load variable.  

Step 4: Compute the database entropy for every progressive database Sj as shown in 

equation (4.20), and plot the progressive entropy along any important variable. Figure 4.4 

shows the progressive entropy curve for a contingency in the system load variable. 

∑
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  (4.20) 
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where,  

• Sj is the progressive database, made up of operating condition xj’s taken one at a time 

in the direction of going towards unacceptable conditions. So variables such as total 

Brittany load the unacceptable operating conditions proliferate in ascending direction, 

and for variables such as reactive reserve the unacceptable operating conditions 

proliferate in descending direction. 

• N is the total number of operating conditions and consequently the total number of 

progressive databases,  

• cj is the number of classes in the database Sj, and 

• pi is the proportion of Sj classified as class i. 

 

 

Fig. 4.4 Boundary progression and progressive entropy in total load variable 
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Again in this case, computational cost can be tremendously saved by using linear 

sensitivities of performance measure with respect to sampling parameters, i.e., loading 

conditions, as described in section 3.3.1.1. In this way, we can skip the step-2 mentioned 

above to compute progressive entropy. 

4.3.2.2 Contingency Grouping Recommendations 

Figure 4.5 shows the typical progressive entropy curves for 4 different contingencies C1 

(highest risk), C2, C3 and C4; based on which recommendations for contingency grouping 

will be made.  

 

Fig. 4.5 Contingency grouping recommendations based on progressive entropy 

The following are some factors that help us in making the decision: 

1. The degree of closeness among curves, i.e. whether intertwined or closely 

enveloping? 

Group 2 

Group 1 

C1 

C2 

C3 

C4 

Mismatch in progressive 
influence of contingencies 
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2. Visualization of progressive influence of contingencies over operating conditions 

For instance, in Fig. 4.5 the progressive entropy curves for C1 and C2 along load variable 

intertwine, indicating they have similar influence on the operating conditions in all the load 

ranges. So they can be grouped together as Group1 to generate a common operating rule, 

which is advantageous for the operators. There are two options for generating a training 

database for a common rule: 

1. High Risk: The training database is generated by sampling the operating conditions 

from the boundary region of the contingency that has highest risk among the grouped 

ones having similar severity. This is to ensure that the rule performs exclusively well 

for the high risk contingency. 

2. Proportional Risk:  The training database is generated by sampling operating 

conditions from each contingency’s boundary region proportional to its risk index. 

This is done to bias the training database according to the likelihood of contingencies 

among the group of contingencies that have similar severity. 

Also in Fig. 4.5, Group1 contingencies envelope C3 and C4. Similarly C3 envelopes C4. 

But they are not as close as C1 and C2, implying that the progressive influence of the 

contingencies in Group1 over the operating conditions is more severe than the contingencies 

C3 and C4. So if it is not too close, then a common rule may poorly perform. The reduction in 

performance may manifest in different ways depending upon the choice of training database. 

For instance, a common rule derived from the training database generated based on the “high 

risk” criteria will degrade the performance for other contingencies in the following way. The 

rule will generate a lot of false alarms for less severe contingencies or more risks for more 

severe contingencies. For instance, the rule for C1 may produce a lot of false alarms when 
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applied to C3 and C4. If the common rule is generated based on the criteria of “proportional 

risk”, then there is a great chance of degrading the rule performance for high risk 

contingency, as the rule has to cater to a wide spread boundary region. 

Nevertheless, in the case of less severe contingencies C3 and C4, inspite of the above 

mentioned possible degradations in rule performance, they can still be grouped together as 

Group2. In this case, the reduction in rule performance generally is very less, since they fall 

in the lower severity band with smaller boundary regions. 

So for each group recommendation, two training databases are generated, i.e., as per high 

risk and proportional risk criteria. The final common rule is selected based on its 

performance over all the contingencies in the group. Therefore, the proposed contingency 

grouping concept promises:  

1. Reduction in operating rules. For the hypothetical case considered in Fig. 4.5, rules 

reduced from five to two for a total of five contingencies. 

2. Computation reduction for generating training databases. This is possible since the 

group recommendations are made prior to the stage of training database generation by 

using linear sensitivities to obtain progressive entropy curves. will reduce the 

computational cost involved in generating training database for decision tree training. 

In the hypothetical case discussed above in Fig. 4.5, four databases are required to 

derive common rules, instead of five for individual contingencies. 

3. Improvement in rule performance by producing a separate common rule for different 

groups, which is better than overfitting a global common rule for all the 

contingencies. 
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4.4 NUMERICAL RESULTS 

4.4.1 Risk Based Contingency Ranking 

4.4.1.1 Study Description 

The proposed risk based contingency ranking approach is applied for a voltage stability 

study performed on SEO region (Système Eléctrique Ouest, West France, Brittany) of French 

EHV system. Figure 4.6 shows a map of critical contingency locations in French network 

that are selected in consultation with RTE engineers. These contingencies are usually 

considered to have severe influence on voltage stability of SEO network during winter. The 

objective is to rank the considered contingencies in decreasing order of their voltage collapse 

risk. Eventually the top contingencies are screened, and decision rules derived as per 

methods proposed in chapter 3. 

The details of each contingency in the locations shown in Fig. 4.6 are presented in Table 

4.1. The Chinon node, which is not shown in the French network of Fig. 4.6, is near the 

Avoine node. At Flamanville node, there are two critical units and therefore three different 

contingencies, i.e., unit 1 outage, unit 2 outage and outage of both the units, are investigated 

as shown in Table 4.1. Out of seven contingencies considered for the study, three critical 

ones (at Chinon, Cordemais and Domloup) are within the SEO region, and the rest (at 

Flamanville and Launay) are outside SEO. Those contingencies outside SEO region, 

especially Flamanville with two important generators, fall in the western belt of the French 

network and are considered to impose serious influence on SEO region’s voltage stability 

performance during heavy transactions. 
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Fig. 4.6 French EHV network – contingency list 

 

Table 4.1 also provides unavailability rates per year for every contingency. The 

probability of contingency is computed as per the equation (4.3). 
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Table 4.1 Contingency probability 

Contingency Unavailability 
rates/year 

Unavailability 
rates/3 months 

Probability 

CHINON unit 3 0.1925 0.048125 0.04698 
CORDEMAIS bus bar 0.316 0.079 0.07596 
DOMLOUP bus bar 0.02235 0.005588 0.00557 

FLAMANVILLE unit 1 0.1925 0.048125 0.04698 

FLAMANVILLE unit 2 0.1925 0.048125 0.04698 
FLAMANVILLE N-2 0.03705 0.002316 0.00220 
LAUNAY bus bar 0.02235 0.005588 0.00557 

 

4.4.1.2 Contingency Severity for Single Stress Direction 

Table 4.2 presents the results of computing severity function for Cordemais bus bar fault 

using both the proposed methods (Normal as well as M/C learning), along 10 different stress 

directions that are sampled using LHS method. The different homothetic stress directions are 

sampled on the basis of stress factor matrix D obtained from historical data, as was explained 

in section 3.3.1.3. The probability of the sampled stress directions are computed using the 

instance based learning, kNN method explained in section 4.3.1.2, and the results in the 

Table 4.2 are presented starting from highest probable stress direction to the lowest among 

the 10 sampled directions.  

For the study with the assumption of Normal distribution of loading conditions, the 

probability of collapse was computed along every single stress direction. In the case of M/C 

learning method assuming non-Normal distribution, the probability of collapse is estimated 

by mapping all the sampled operating conditions as shown in Fig. 4.3 to the single stress 

direction under consideration. It is seen that the estimated contingency severity varies along 

every stress direction for both the cases. 
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Table 4.2 Cordemais contingency severity estimation for various stress directions 

Stress Direction No. Probability of Stress Direction Severity 
  Normal M/C learning 
1 0.24513 0.07509 0.12103 
2 0.22667 0.16468 0.17641 
3 0.16821 0.09783 0.17436 
4 0.14667 0.18423 0.20205 

5 0.05231 0.12722 0.26462 

6 0.02974 0.12681 0.18154 

7 0.01231 0.05548 0.06154 
8 0.00513 0.05548 0.10974 
9 0.0041 0.19641 0.27282 
10 0.00103 0.22757 0.13436 

 

Figures 4.7 and 4.8 show contingency severity results given in Table 4.2 for the 

decreasing order of stress direction probabilities for Normal and non-parametric assumptions 

of state space respectively. It is observed that for less likely stress directions, the severity of 

contingency is very high, as it is true that for rare operating conditions the system is more 

prone to post-contingency voltage collapse. If we consider the first 6 stress directions, in both 

Figs. 4.7 and 4.8 it is seen that though stress direction 1 has high probability of occurrence 

than the stress directions 2, 3, 4, 5 and 6; the severity for later directions are much higher 

than that of direction 1. So it is important to consider the influence of multiple stress 

directions over contingency severity estimates. This would ensure proper realistic estimation 

of risk of contingency over many operating conditions sampled from a multivariate load state 

space. Otherwise, we will get misleading results. 
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Fig. 4.7 Severity estimation for various single stress directions

Fig. 4.8 Severity estimation for various single stress directions 
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4.4.1.3 Contingency Severity for Multiple Stress Directions 

Table 4.3 shows the results when multiple stress directions are considered for estimating 

contingency severity over a multivariate operating parameter state space. The results for 

three contingencies are shown, for which the severity (probability of collapse) was also 

computed by performing proper dynamic simulation using ASTRE software. This was done 

by sampling 975 operating conditions from the non-parametric multivariate load distribution 

using the copula method explained in chapter 3, which also captures the inter-correlation 

among various loads. Then the various base cases formed are subject to all the three 

contingencies systematically using dynamic simulation and the post-contingency 

performances are analyzed. Using the same post-contingency criteria mentioned in earlier 

chapter for dynamic simulation, i.e., 400 KV voltages and simulation convergence status, the 

various base cases are labeled as acceptable or unacceptable; which gives the probability of 

collapse estimation from simulation. The probability of collapse values estimated by 

simulation is 0.1702, 0.7446, and 0.1466 for the indicated contingencies at Cordemais, 

Flamanville and Launay respectively. 

 
Table 4.3 Severity estimate comparisons 

S. No Contingency Severity 

  SSDS MVN M/C Simulation 
1 CORDEMAIS bus bar 0.07509 0.11955 0.16821 0.1702 
2 FLAMANVILLE N-2 1.00000 0.80256 0.77128 0.7446 
3 LAUNAY bus bar 0.07042 0.09647 0.16000 0.14666 

 

Table 4.3 also shows the contingency severity estimated using various stress directions in 

three different ways, i.e., SSDS – only considering the most likely single stress direction, 
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MVN – assuming a multivariate Normal distribution of loading conditions, and M/C – using 

Machine learning for operating conditions defined by correlated multivariate loads that 

follows a non-parametric distribution. For MVN and M/C k=15 different stress directions 

were sampled in the multivariate state space. It is seen that the estimated results using M/C 

corroborates with the simulation results. This is due to the fact that the simulation was 

performed on operating conditions that were sampled from realistic multivariate distribution 

of load that follows non-parametric distribution with mutual load correlation. Though, MVN 

study improves on the estimates computed by SSDS closer to the simulation results, 

nevertheless this study emphasizes that it is essential to take into account the original 

historical load distribution’s characteristics to obtain realistic results. So the proposed M/C 

based contingency risk estimation method accomplishes this requirement with a very low 

computational cost. 

4.4.1.4 Risk Based Contingency Ranking 

Table 4.4 shows the final risk based contingency ranking result for the considered seven 

contingencies using the proposed M/C method. 

 

Table 4.4 Risk based contingency ranking 

Rank Contingency Pr (C) Sev (C) 
 

Risk  (C) 

1 CORDEMAIS bus bar 0.07596 0.1682 0.01277 
2 FLAMANVILE unit 2 0.04698 0.2010 0.00944 
3 FLAMANVILE unit 1 0.04698 0.1928 0.00905 
4 CHINON unit 3 0.04698 0.1077 0.00505 
5 FLAMANVILLE N-2 0.00220 0.7713 0.00170 
6 LAUNANY bus bar 0.00557 0.16 0.00089 
7 DOMLOUP bus bar 0.00557 0.0831 0.00046 
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risk estimation of 7 contingencies, for a sampled 15 stress directions in the study, required 

15*7 = 105 CPF simulations and linear sensitivity computations to estimate severity of every 

contingency over 975 different loading conditions, as shown in Table 4.5. If not for the linear 

sensitivities, the conventional method would require a huge computation of about 

975*7=6825 CPF computations to compute the margin stability or 6825 dynamic simulations 

to compute dynamic performance.  

Table 4.5 Computational benefit of proposed CRE 

Case Contingencies Operating Conditions Total simulations 

 Uncertainty: Loads    

Conventional 7 975  6825 

Proposed CRE (k=15) 7 975 105 

Uncertainty: Loads and SVCs    

Conventional (estimation) 7 3900 27300 

Proposed CRE (k=15) (estimation) 7 3900 105 

 

So the computational cost of proposed CRE doesn’t even depend on the number of 

operating conditions sampled, but only on number of homothetic stress directions sampled. If 

a very few homothetic stress directions has the ability to effectively characterize the load 

state space, then the computational cost to estimate contingency severity is highly reduced, as 

shown in Table 4.5. 

The proposed CRE method’s ability to reduce computational cost drastically for 

contingency ranking is bolstered when we consider some discrete parameter uncertainties 

also, such as SVC unavailability or generator group unavailability etc, in the stage of Monte 

Carlo sampling of basecases. Table 4.5 shows the estimated computational requirements for 

conventional and proposed CRE method of contingency risk estimation for operational state 

space comprised of both loading conditions and 2 SVC unavailabilities. There could be 4 
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combinations of 2 SVC states, i.e., both unavailable (00), one of them unavailable (01 and 

10) and both available (11). So systematically combining these 4 states with the sampled 975 

loading conditions, we obtain 3900 basecases or operating conditions. So the conventional 

contingency severity estimation method will have to perform 3900*7 = 27300 simulations 

for 7 contingencies. But the computational requirements of the proposed CRE method based 

on linear sensitivities and machine learning still proportional only to the number of stress 

directions characterizing the load state space. The influence of discrete parameter, i.e., SVC 

unavailability states can be accounted using the linear sensitivities, i.e., the sensitivity of 

stability margin with respect to reactive power injection at the SVC buses, as was used 

successfully in chapter 3 to find the boundary region. 

It should be noted that the proposed CRE I and II have both almost similar computational 

requirements, as shown in Table 4.6. So the proposed contingency risk estimation method 

enables tremendous computational cost reduction for the purpose of risk based contingency 

ranking of multiple contingencies over several operating conditions sampled. The number of 

stress directions sampled could be increased further for increased accuracy, and still the 

computational requirement would be very less compared to full-fledged conventional 

contingency simulations. 

 

Table 4.6 Computational requirements of proposed CRE I and CRE II 

Contingency = 1 and k = 15 CRE I CRE II 

CPF computations 15 15 

Linear Sensitivity computations 15 15 

Stress directions probability estimation using IBk Yes No 

Stress directions mapping to operating conditions using IBk  No Yes 
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4.4.2 Multiple Contingencies Security Assessment 

4.4.2.1 Contingency Grouping 

This section presents the results for the proposed contingency grouping concept. The 

following 5 contingencies have been considered: Cordemais bus bar fault, Flamanville unit-2 

outage, Chinon unit outage, Launay bus bar fault, and Domloup bus bar fault. 

Figure 4.10 shows the progressive entropy curves for all the above mentioned 

contingencies in the total Brittany load state space. The possible contingency group 

recommendations are as shown in Fig. 4.11. This is because of their closeness and their 

nature of progression along the operating conditions through various ranges of loads. So the 

proposed grouping promises reduction in the number of operational rules from five to two. 

The training databases required for validating the group recommendations are four as 

shown in Fig. 4.12. Therefore the contingency grouping also promises computational cost 

benefit by reducing the number of training databases required from five to four. The two best 

common decision rules for all the five contingencies are finally selected by rule validation 

process using an independent test data. 
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Fig. 4.10 Progressive entropy based contingency grouping
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Fig. 4.12 Training Databases required to be generated 

Figures 4.13, 4.14 and 4.15 show the progressive entropy curves of various 

contingencies on other variables, namely Cordemais bus voltage, total SEO region reactive 

reserve, and Chinon generator group reactive reserve. 

 

Fig. 4.13 Progressive entropy curves on Cordemais Voltage 
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Fig. 4.14 Progressive entropy curves on total SEO reactive reserve 

 

Fig. 4.15 Progressive entropy curves on Chinon group reactive reserve 
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The plots based on the above power system variables too produce similar contingency 

grouping recommendations, corroborating the recommendation based on the load variable. 

But the advantage of plotting the progressive entropy for variations in load parameter is that 

it is the sampling parameter, and using linear sensitivities the performance measures are 

computed without full-fledged simulation. So this saves a lot of computation, and promises 

further computational requirements savings at the stage of training database generation. 

Figure 4.16 shows both the estimation and simulation output of progressive entropy 

curves for Cordemais contingency along the load variable. It was done for a sample of 975 

loading conditions randomly selected form the multivariate loading distribution. 

 

 

Fig. 4.16 Progressive entropy estimation vs. simulation 
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4.4.2.2 Operating Rules Validation 

The study specifications for sampling the operating parameters, i.e., loading 

conditions, generators group unavailability, and SVCs unavailability in Brittany area, are 

similar to the study described in chapter 2, with a minor change regarding generator groups 

considered. In this study the main production units considered are nuclear groups in Civaux, 

Blayais, and St-Laurent. The units at Flamanville and Chinon are considered as part of the 

contingency, and so are not included in the sampling strategy. So the three units are sampled 

such that each of these three unavailabilities are represented in 1/4th of the total basecases. 

The contingencies are applied at 900s and the ASTRE dynamic simulation is terminated at 

1500s. The criteria used for labeling scenarios based on post-contingency responses are 

based on EHV bus voltages and simulation status at 1500s, same as chapter 2 specifications. 

Finally the training databases are formed, which contains 400KV voltages, SVC outputs and 

generator group reactive reserves sampled at 890s of simulation as the attributes and scenario 

labels as the class attribute. 

The following results present the performances of various operating rules derived 

from a variety of training databases, including the databases recommended in the section 

4.4.2.1 by the progressive entropy based contingency grouping method. Every training 

database is around the same size containing about 8000 operating conditions. Independent 

test databases are formed for every contingency separately by exactly following the same 

sampling and simulation specifications as mentioned above. All the independent test sets 

contains about 4000 instances. 

Table 4.7 presents the performance results of rules for each contingency derived from 

separate a decision tree based on training database containing its respective post-contingency 
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responses. Rule for each contingency is tested against its respective test set. It can be seen 

that the classification accuracies for every contingency from separate decision trees are very 

high. But in this case, we end up with five separate rules for five contingencies. 

Table 4.7 Separate operating rule for every contingency 

S No Contingency Accuracy FA Risk 

1 Cordemais 94.9783 0.034 0.122 

2 Domloup 95.2081 0.039 0.068 

3 Flamanville 99.3467 0.001 0.203 

4 Chinon 99.3723 0.002 0.308 

5 Launay 98.1378 0.008 0.19 

 

Table 4.8 shows the result of rule performance when a common rule is derived from 

the training database containing only the contingency responses of Cordemais bus bar fault, 

the contingency with highest risk. The common rule is tested against the specific 

contingencies test data, and it is seen that the common rule based on Cordemais contingency 

doesn’t perform well for all the other contingencies. For all the contingencies with lower 

severity than Cordemais, i.e., the contingencies at Flamanville, Launay and Chinon, the false 

alarms have increased tremendously. So a common rule based on worst case contingency 

alone will not be suitable for all the other contingencies, including Domloup which is 

grouped together with Cordemais for its similar severity levels at various load ranges as 

shown by progressive entropy curves in Fig. 4.10. 

Table 4.8 One common rule based on Cordemais contingency responses 

S No Contingency Accuracy FA Risk 

1 Cordemais 94.9783 0.034 0.122 

2 Flamanville 82.5067 0.174 0.203 

3 Chinon 82.2067 0.18 0 

4 Domloup 87.7057 0.011 0.388 

5 Launay 87.2793 0.135 0 
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Table 4.9 shows a common operating rule formed by generating a training database 

with operating conditions containing post-contingency responses of every contingency 

proportional to its risk index, as shown in Table 4.4. We can see that the rule doesn’t perform 

well for the most constraining contingency at Cordemais, apart from its poor performance for 

other contingencies too. So such a common decision tree requires meta-learning techniques 

to improve its accuracy further, at the cost of overfitting the tree and complicating the 

operating rule. 

Table 4.9 One common rule based on all the contingency responses 

S No Contingency Accuracy FA Risk 

1 Cordemais 90.6 0.003 0.5 

2 Flamanville 91.331 0.078 0.375 

3 Chinon 90.82 0.09 0.273 

4 Domloup 84.85 0 0.532 

5 Launay 96.36 0.026 0.2 

 

Table 4.10 shows the results for operating rule performance when Cordemais is 

grouped with other contingencies. Common operating rule is derived for each group based on 

training database containing contingency responses proportion to risk indices of 

contingencies in that respective group. It is seen that the recommended grouping of 

Cordemais contingency with Domloup contingency has the best performance, where the 

rule’s performance for Cordemais in on par with the highest performance obtained in Table 

4.7 and the rule’s performance for Domloup betters the performance in Tables 4.8 and 4.9. 

The reduction in common rule’s performance for Domloup contingency compared to Table 

4.7 performance can be traded off against the fact that Domloup contingency has the least 
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risk index with very less probability and the prospect of reducing the number of operating 

rules atleast by one for operator’s convenience. The rule could be further improved by 

increasing the representation of post-contingency responses of Domloup contingency more in 

the training database. 

Table 4.10 Cordemais contingency grouped with other contingencies 

Contingency Accuracy 

Cordemais 94.8576 92.66 92.63 

Domloup | Flamanville | Chinon 89.09 87.07 86.09 

 

Fig. 4.17 shows the top five rule attributes for Group-1 contingencies, with stars placed at 

Cordemais and Domloup contingency locations.  

 

Fig. 4.17 Top five operating rule attributes for Group-1 contingencies 
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It shows rule attributes derived from Cordemais post-contingency response database, 

Domloup post-contingency response database and also the common training database 

produced based on proportional representation of both the contingency responses according 

to their risk indices. The commonality of the rule attributes for each case in the French Grid 

justifies the grouping of these two contingencies together for security assessment. 

Nevertheless, it should be noted that though the rule attributes are similar, the order they 

appear in the tree and their respective thresholds are different due to the differences in the 

training databases for each case. 

Table 4.11 shows the results justifying the Group-2 recommendation made in section 

4.4.2.1, and also aids in finalizing the common operating rule for the Group-2 contingencies. 

Along the columns is different training databases generated starting from a database made of 

Flamanville contingency responses only, then Launay contingency responses only, then 

Flamanville and Launay responses together according to the proportion of their their risk 

indices, and finally Flamanville, Launay and Chinon responses together according to the 

proportion of their their risk indices. The first Flamanville and fourth Flamanville & 

Launay & Chinon  are the recommended training databases as per Group recommendation. 

So it can be observed that both the recommended training databases are producing operating 

rules that perform well. The rule from Flamanville & Launay & Chinon  training database 

gives the best performance for all the contingencies, and the rule from Flamanville performs 

well in proportion to the contingency’s risk index, i.e., for Flamanville with high risk the 

performance is the best and for Launay with the lowest risk the performance is least but still 

high enough. 
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Table 4.11 Group-2 contingencies rule performances from various training databases 

               Training Database 

 

Contingency 

Flamanville Launay Flamanville & 

Launay 

Flamanville & 

Launay & Chinon 

Flamanville 99.3467 92.86 97.67 97.1691 

Launay 93.93 98.1378 94.6 95.1515 

Chinon 96.517 95.437 97.465 98.1169 

 

The conclusion is that:  

1. The contingency grouping recommendation based on progressive entropy doesn’t 

give importance to the proximity of contingencies on the French Grid, but is 

based on the similarity of contingency effects on the operating conditions along 

all the load ranges. The final grouping of contingencies is shown in Fig. 4.18. 

2. The group recommendations guide in reducing the number of operating rules for 

operator’s convenience and also in generating set of common rules with good 

performance for multiple contingencies. This is better than having a common rule 

for all the contingencies performance wise, and having separate operating rules 

for every contingency convenience wise. 

3. The decision on best operating rule is taken based on the rule’s performance on 

various contingencies within the group, weighed according to the risk levels of 

each contingency. 

4. Even if the rules are to be improved by some feedback or meta-learning 

techniques, this is a better starting point as the degree of complexity of the final 

rule will be reduced. 

5. By using linear sensitivities progressive entropy curves for all the contingencies 
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along the load variable are computed at much reduced computation, which further 

helps in reducing the computational requirements for generating training 

databases. This is achieved using the guidance obtained from the contingency 

grouping stage. 

 

Fig. 4.18 French EHV network – contingency grouping recommendations 
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6. The proposed criteria of grouping contingency is mainly visual right now, but it 

can be advanced to include quantitative index by using machine learning 

techniques to find the closeness in multivariate regions.  

7. The proposed contingency grouping based on overlap of boundary regions can 

also be used to group contingencies for other applications, such as reactive power 

planning problems, special protection schemes design for a group of 

contingencies, investigating interactions among various defense schemes etc. 

4.5 CONCLUSIONS 

This chapter proposed a comprehensive decision tree based power system operational 

planning for multiple contingencies. The foundation for the chapter was laid by earlier 

chapters, where the process of efficient training database generation is proposed and 

illustrated. In this chapter the main contribution was the proposal of risk based contingency 

ranking method and the progressive entropy based contingency grouping method. The 

developed concepts were demonstrated on the French network for five critical contingency 

locations. The contingency risk estimation method based on linear sensitivities and machine 

learning techniques for non-parametric operating conditions distribution proved to produce 

realistic results at a much reduced computational cost. The contingency grouping method 

guided in obtaining lesser number of operating rules that performs well for all the 

contingencies in the respective groups, thereby providing system operators the benefit of 

dealing with lesser number of rules. 
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CHAPTER 5 CONCLUSIONS 

5.1 CONCLUSIONS 

Our primary focus in this dissertation has been on power system operational planning 

using decision trees against voltage instability issues. The primary motivation of this work is 

from the fact that the performance of the operating rules derived from such machine learning 

algorithms in real time depends heavily on the quality of database used for training. Most of 

the work in decision tree based security assessment in power system has focused in 

improving the decision tree algorithm to obtain better classification performance from rules. 

While some works have made the crucial observation about the requirement of good training 

database, there has not been any work that has developed a systematic procedure to generate 

a training dataset that has the ability to capture the most important and realistic operating 

conditions having significant influence on the decision making. Also, the issues of generating 

operating rules for many contingencies, regarding the classification performance and system 

operators’ convenience, have not been given enough attention. 

So, in this dissertation we have developed efficient methods to process the system 

scenarios for generating high information contained database for training the decision trees. 

The method is constructed based on Monte Carlo Variance reduction techniques and has 

been systematically illustrated on a large scale realistic power network of French EHV grid 

with 5331 buses, with explicit focus on the West France, i.e., Brittany region that is prone to 

voltage collapse situations during winter periods due to heavy loading. The results showed 

significant improvement in the classification performances of the decision trees offering 

tremendous economic benefits, all at greatly reduced computational requirements inspite of 
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considering non-parametric multivariate distributions of operating parameters for sampling 

operating conditions. The results were analyzed in detail and the importance of generating 

such intelligent databases for training has been established.  

The latter part of the dissertation developed a systematic approach to perform decision 

tree based security assessment of multiple contingencies. A risk based contingency ranking 

method based on instance based learning algorithm was developed, taking into consideration 

the non-parametric nature of operating conditions probability distribution. Also a 

contingency grouping method was proposed that enabled generating minimum number of 

well performing operating rules for many contingencies, with an idea to alleviate the burden 

for operators in making decisions. 

All the reduction in computational requirements, i.e., in generating high information 

content training database, estimating risk indices for multiple contingencies, and also for 

generating operating rules for many contingencies, was achieved by the proposed Latin 

Hypercube Sampling of stress directions in multivariate state space, and also by the use of 

linear sensitivities of performance measures.  

The specific contributions of the work in this dissertation are: 

1. Efficient processing of system scenarios: An approach to efficiently sample system 

scenarios in machine learning studies for power system security assessment that increases 

classification accuracy while reducing computing requirements.  

a. Sampling from correlated non-parametric multivariate distribution: The non-

parametric and dependence structure of expected loading scenarios, according to 

historical observations, were taken into account. This result in generating operating 

rules providing higher classification accuracy, more economic rules with 
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interesting monitoring locations that are closer to the contingency event. 

b. Fast state space characterization: A Latin hypercube sampling of stress directions 

and linear sensitivities based method was developed for very fast identification of 

high information content region (boundary region) in the multivariate operating 

parameter state space. Since it is based on Monte Carlo simulation, it doesn’t face 

any computationally intractable situations as some analytical methods may face in 

finding the closest boundary limits for large scale systems. 

2. Operational security rules of multiple contingencies: A comprehensive 

methodology to perform decision tree based security assessment for multiple 

contingencies.  

a. Risk-based contingency ranking: A risk-based contingency ranking method has 

been developed that helps in screening most critical contingencies for planning 

under a wide range of scenarios. The method gives accurate risk indices since it 

considers the realistic possibility of loading conditions following any likely stress 

directions from the non-parametric historical distribution. The computational cost 

involved in ranking many contingencies is greatly reduced by using linear 

sensitivities. 

b. Contingency Grouping: A contingency grouping method based on newly devised 

metric called progressive entropy is developed that guides in generating the 

minimum number of well performing operating rules for all the contingencies, 

thereby benefiting system operators. 

3. Real-time application: The developed methods are systematically implemented in 

French power network, focusing on the west France, Brittany region. The dissertation 
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provided solutions for a realistic voltage stability related operational planning problem 

that SEO region of French network faces every winter. The RTE-France company is on 

its way to apply the developed efficient processing methodology also for an investment 

planning problem this summer. 

5.2 FUTURE WORK 

Special Protection System (SPS) reliability assessment: The main difference between 

deriving operating rules and SPS logic are: 

a. The SPS logic is automated. 

b. The SPS logic is not only limited to critical operating condition detection with respect 

to some stability criteria, but also involves automatic corrective action to safeguard 

the system against impending instability. 

Also, there are important questions to be answered regarding SPS’s reliable operation 

from a ‘system level view’, such as: 

(i) Are there system operating conditions (topology, loading, flows, dispatch, and voltage 

levels) that may generate a failure mode for the SPS?  

(ii)  Are there two or more SPS that may interact to produce a failure mode? 

So the objective is to develop a decision support tool to perform SPS failure mode 

identification, logic re-design and risk assessment from a ‘systems view’. The contingency 

grouping concept will be used to reduce the problem dimension in identifying the possible 

failure modes due to SPS interactions, thereby reducing the computational burden and 

analysis complexity. The efficient scenario processing method developed in the dissertation 

will be used to identify failure modes, estimate risk indices and re-design SPS logic. 
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