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ABSTRACT

Power System security assessment and the associated platudies sire becoming
more and more complex with ever increasing uncertainties timralhorizons. An effective
means of performing operational and investment planning studiestwbrkelimitations
associated with static or dynamic post-disturbance performanbéeprs has been to take a
Monte Carlo simulation based approach. The approach harnesses ogmpuoter to
develop a database of post-contingency response over a wideofaddierent operating
conditions, and then apply statistical or machine learning methaadract useful planning
and operational information from the database.

Key to the machine learning based planning approach is the mannedniah the
different operating conditions are sampled to generate ainmgaidatabase. This work
develops an efficient sampling procedure that maximizes informediotent in the training
database while minimizing computing requirements to generatey ifinding the most
influential region in the sampling state space and sampling togereonditions from it
according to their relative likelihood. The Monte-Carlo varianciicgon methods are used
to construct the proposed sampling approach, which is envisioned to allbetioaented
industries to operate the system according to economic rule.

The dissertation also develops a comprehensive methodology to performordées
based security assessment for multiple contingencies. Thensysecurity limits and
associated operating rules depend on the set of contingenciadecedsfor planning.
Considering the probabilistic nature of the power system, this worlogsva risk based
contingency ranking method that helps in screening the mostatibntingencies from a

contingency list. The developed contingency risk estimation methagbs gealistic risk
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Xi

indices since it takes into account the non-parametric nature ohtioge condition
distribution, and it also saves tremendous computational cost sin@s ilinsar sensitivities
to estimate the risk. Finally, a contingency grouping method is pegbthat guides in
generating common operating rules for every group that perfomels for all the
contingencies in that respective group, thereby providing systenatopse the benefit of
dealing with lesser number of rules. The contingency grouping edbas newly devised
metric calledprogressive entropyhat helps in finding similarities among contingencies
based on their consequences on the operating conditions along all tmarlgas, and not
just their proximity in the grid.

The proposed methods are implemented in the west France, Bméggioyn of RTE-
France’s test system to derive decision rules for multipletimgencies against voltage

stability problems.
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CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

In the modern society, electric power is considered as one oétiiesital commodities.
With the growing dependence on industries in the current highly cdmeedconomy and
people’s fast-paced life style, there is a great importan@n do power system reliability
assessments and planning. Traditionally such studies in power dysigie deterministic
assessment techniques and criteria, that are being used ticgbrapplications even now,
such as WECC/NERC disturbance-performance table for transmig&nning [1, 2]. But
the drawback with deterministic criteria is that they do reftect the stochastic or
probabilistic nature of the system in terms of load profiles, companailability, failures
etc [3]. Furthermore, in the current market oriented power steuathere heavy transactions
are happening over long transmission lines in an interconnected enviripringesystem is
constantly pushed to its stability limits, and the number of uncedsimas increased
tremendously with respect to generation dispatch, reactive res@waiability etc.
Therefore the need to incorporate probabilistic or stochastic teckniquassess power
system reliability and obtain suitable indices or guidelines famrphg has been recognized
by the power system managers, planners and operators; andl sexdr techniques have

been developed [4, 5, 6, 7, 8].

1.2 PROBABILISTIC RELIABILITY EVALUATION METHODSIN POWERSYSTEM

Power system reliability assessment can be divided intonsyatieequacy (long term
planning) and system security (operational) studies [9]. The teequacy refers to the

existence of sufficient resources to satisfy load entitiesparational constraints, which
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include facilities necessary to generate sufficient energhably transport the energy
produced to the load entities. The term security refers to thgy abithe system to respond
to dynamic or transient disturbances, which includes eventsasucbntingencies that could
lead to system instabilities etc.

Typically reliability evaluation techniques can be divided into two categ¢8i:

e Analytical: Represent the power system using analytical models and evheate
indices using mathematical solutions.

e Simulation: Monte Carlo simulation (MCS) methods used to estimate the shdice
or generate post-contingency data by simulating the actualegsoavith
randomness of system states.

MCS methods have several advantages such as [9]:

e Several system effects or process including nonelectricalrgastich as weather
effects etc. can be included in the study which may have to be appted in
analytical methods.

e They can simulate from the probability distributions of the paramdte be
sampled such as component failure or system operating conditions etc.

e They can also provide probability distribution of performance measandom
variables which have great practical significance.

An overview of simulation methodology is shown in Fig. 1.1. It involves twagom
tasks: database generation approacand statistical or machine learning analysias

illustrated by left-hand-side and right hand side of the figure respactivel
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Fig. 1.1 Power system probabilistic reliability analysis overview [10]
1.2.1Database Generation Approach
Database generation approach involves the following steps:

(1) Random SamplingDperating parameters (load, unit commitment, circuit outages,
power transfers etc.) are selected, assigned a distributionueifgrm, Gaussian,
exponential, empirical (historical records) etc.) and randomlypkaim This
process is generally known as Monte Carlo sampling.

(2) Optimal power flowrun to obtain the initial state, and

(3) Contingency eventare simulated using steady-state or time-domain (dynamic)
simulation, and post-contingency performance measures are obtained.

1.2.2 Statistical Analysis
The object of many simulation experiments in power systenmasestimation of an

expectatiorE[g(X)], whereX is a random vector, typically the system performance measure
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obtained from contingency analysis output of data generation stepxphetation functions
estimated based on performance measure typically provides systniitgindices.

Such system reliability evaluation using MCS methods has beamsasly developed in

the domain of adequacy assessment [9, 11, 12] to evaluate:
) Generating capacity reliabilitywith indices such as loss of load expectation
(LOLE), Loss of energy expectation (LOLE) etc.
(i) Composite system reliabilitwith indices such as Expected load curtailments
(ELC), Expected demand not served (EDNS), Expected energy notdserve
(EENS) etc.,
(i)  Distribution system reliabilitywith indices such as System average interruption
frequency index (SAIFI), System average interruption duration if{@&4DI)
etc.,
(iv)  Reliability worth/coswith indices such as Expected interruption cost (EIC) etc.
For system security assessment studies, MCS s typically torestimate risk-based
system security limits with respect to transient stabitihermal overload, voltage stability
etc.,, such as maximum allowable system loadability, expecte@, Akpected voltage
stability margin etc [13, 14, 15, 16].
1.2.3Automatic Machine Learning Techniques

Automatic machine learning methods [17, 18], also known as knowledge/eligdrom
databases, are used to extract a high level information, or knowleslgeafhuge database
containing post-contingency responses obtained from database geneegtiorhe machine

learning or data mining techniques are broadly classified as:
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e Unsupervised learningThose methods which do not have a class or target attribute.
For example, association rule mining can be used to find thelaion between
various attributes. Clustering methods suclk-ageans, EM etc. are generally used to

discover classes.

e Supervised learningThose methods that have a class or target attribute, such as

classification, numerical prediction etc., and use the othebwtts (other observable
variables) to classify or predict class values of scendfiosexample, naive bayes,
decision trees, instance based learning, neural network, support veathine,
regression etc.

With the increase in computing power, this tool has been widely nsedny disciplines
ranging from psychology, medical diagnosis, image-processing, and.da the field of
power system, it has found a very great application in securiggssent [19, 20, 21, 22,
23]. Other avenues of power system where they find applicatiodesmign of protection
systems, load forecasting [24], load modeling, state estimation, equipment mgretori

1.2.3.1Decision Tree Based Inductive Learning

There is particularly a great interest in using decisioastri@ power system security
assessment for their ability to give explicit rules to eysbperators in terms of critical pre-
contingency system attributes. These operating rules help dinguoperators in energy
control centers as shown in Fig. 1.2, during conditions for which contregemay result in
violation of reliability criteria. So effectively these opengtirules help operators map the
pre-contingency scenarios to post-contingency consequencesytheeepredictive fashion
delineating secure operating regions from insecure operatingnsem the space of pre-

contingency parameters accessible in control centers sudbweas §eneration levels, load
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levels etc. Therefore the proximity to a security boundanybeaeasily monitored, and when
an alarm is encountered the operator must take appropriate conitool tacmove into a
more secure operating condition. This gives the operators a veplfesand easy way to
monitor and handle the power system operation, which otherwise is tédicaisch a huge

non-linear dynamic system.

Fig. 1.2 Typical control center environment — Operational rules application

So the decision tree based inductive learning method enables decaldersnin an
operational planning environment to establish operating guidelines es milterms of
threshold values of various critical pre-contingency systéniuaties, in order to figure out
the conditions of power system during which it is secure/stable fpost-contingency
performance point of view [25, 26, 27, 28, 29].

The inductive learning is performed on the database obtained fraiadat generation
step and operational rules are derived, which is deductively apmiddatn unknown
scenarios. Information required for building decision tree:

e Atraining set, containing several pre-contingency attributes with known class va
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e The classification variable (i.e., class attribute with typiclass values such as
“secure” or “insecure”) could be based on post-contingency peafarenindices like
voltage stability margin, etc.

e An optimal splitting rule, i.e., rule to find critical attribute
e A stopping rule, such as maximum tree length, depth, or minimum instances etc.

Basic Algorithm:

e INPUT the training/learning data into the topmost node
e |F stopping rule applies for the given input data3étEN stop, ELSE Apply the
optimal splitting rule to select the best attribute for splitting the top node
e Using the splitting rule, decompose the learning set iptomutually exclusive
subsets. Usually p = 2, binary tree with two outcomes such as “secure” and “ihsecure
e |F classification achieved (use stopping ruleHJEN return classificationELSE
branch by setting ‘splitting’ attribute to each of the possibteshold values (can be
interpreted as rules), and repeat with branch as your new mice¢he subset of data
as the learning set
The aim is to obtain a model that classifies new instancsang produces simple to
interpret rules. Ideally we would like to get the best modellhatno diversity (impurity),
i.e., all instances belong to same class. But due to many othetaimtees or interactions
that have not been accounted for in the model, there would be sqmoétyn(i.e., non-
homogeneous branch) at most of the levels. So the goal is toaélibeites at every level of
branching such that impurity or diversity is reduced. There am®yrmeasures of impurity,
which are generally used as optimal splitting criteriaclec the best attribute for splitting.

Some of those are Entropy, Information, Gini Index, Gain Ratio etc.
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Classification accuracy and error rates can be used as tioenmerce measures of a
decision tree. There are two kinds of errdfalse Alarms -Acceptable cases classified as
Unacceptable; an®isks -Unacceptable cases as Acceptable. Errors can be calculated by
testing the obtained decision model on the training set, which islyusumabver-estimate.
There are some training set sampling methods subbldsut procedures, cross-validation,
bootstrap etd18] to make the error estimation unbias#ds even better if the testing is
performed using an independdast dataset. Typically some portion of the original data is
reserved for training and the remaining data used for testingleAof thumb is 1/8 for
testing and 2/ for training. There are numerous references [18] that expleiprocess of
building a decision tree from a database with algorithms suth3s]48 etc. CART [30],
Answer Tree [31], Orange [32], WEKA [33] etc. are some softveaalable for building
decision trees.

Many utilities have taken and are continuing to take a seriougsht® implementing
learning algorithm such as decision tree in their decision makmgronment. French
transmission operator RTE has been using decision tree basedysassessment methods
to define operational security rules, especially regarding voltaliggpse prevention [34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44]. They provide operators a better knowledge of the distance
from instability for a post-contingency scenario in terms of queingency system
conditions, and they save a great amount of money while preservinglitidality of the
system by enabling more informed control of the operation nearer to the stahitgy
1.2.4Summary

Monte Carlo simulation based approach has been an effective megesfaiming

operational and investment planning studies of network limitations atesbewth static or
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dynamic post-disturbance performance problems. The approach harcasgpesing power
to develop a database of post-contingency response over a widefalifjerent operating
conditions. Then statistical or machine learning methods suclcesodetree are applied to
extract useful knowledge from the database for decision making.
1.3 OBJECTIVES
This section presents the two major objectives of this dissertatork, along with the

motivations behind the work and the significance of accomplishing the objectives.

1.3.1Efficient Processing of System Scenarios

The most vital and sensitive part of Monte Carlo simulation based reliahiidiestis the
stage of database generation. The confidence we will have irstiitsrgenerally reflects the
confidence we have in the set of system states generateté Wiihe case of statistical
studies, the generated database does influence the quality etilmate, in the case of
machine learning studies it does influence the classificatioforpgance of the derived
operating guidelines against realistic scenarios, selectianitmfal rule attributes and their
threshold values (which will have bearing on economic operation of Eystm), and size
of the operating rules. Furthermore, it typically incurs a lugmputational cost to improve
the quality of estimates in statistical studies and rule’éopaance in machine learning
studies. So there is this contradictory objective of increasiagirtformation content or
intelligence in the database generation step at the expense of minimal camaltaist.

As mentioned, in the case of statistical studies the dat@gjesszation stage using MCS
methods typically become very time consuming as it needs vegg lample size for
estimating reliability indices with good accuracy (low vacen This is especially true for

cases estimating reliability indices related to rare evdhisthis issue has been addressed
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using several Monte Carlo variance reduction techniques, which lbese applied in
practice [45, 46, 47, 48, 49, 50] to improve the accuracy of estimation andedlsce
computational cost. But in the field of decision tree based retiabgsessment studies, the
challenge of producing high information content training databasewatr computational
cost has not been addressed adequately [51, 52, 53, 54]. In the opéurditd¢here are
re-sampling methods to retain only the most important instancesdn already generated
training database [55, 56] for classification purposes. But suchodgtinvolve huge
computational cost in first generating a training databasey tHentifying the most
influential instances, and if need be, generate more of sucingastaRecently, Genc et. al.
[57] proposed an iterative method to a-priori identify the most inflakmégion in the
operating parameter state space, and then enrich the trdmialgase with more instances
from the identified high information content region for enhancingsilaation performance.
In this case, the method proposed to identify the high informatioremoregion involves
heavy computational cost when the dimension of the operating paraspatss increases,
even beyond 10 parameters. Furthermore, the work doesn’'t delineateenmendous
advantages of training a decision tree using high information inedtalatabase, but rather
waters down its significance by including training instances also from @bens, that may
not be so influential to the decision making process.

So the primary objective of this dissertation is to develop aciezft database generation
method that creates a satisfactory training database amiticdmputational cost by sampling
most influential operating conditions from the input operating pararstge space prior to
the stage of power system contingency simulation. In short, the igbjeéstto maximize

information content in the training database, while minimizingpmputing requirementgo
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generate it. This work develops a linear sensitivity based medhesty quickly identify the
high information content region in a multidimensional operating pet@nstate space with
non-parametric probability distribution. The work clearly explaingl @emonstrates the
advantage of exclusively generating a training database frordehgfied high information

content region of the operating parameter state space.

1.3.2 Decision Tree based Operational Planning for Multiple Contingencies

The reliability assessment, and consequently the short termtiopat and long term
investment planning solution strategies depend on the set of cortiegeonsidered in the
planning study. Typically, a thorough contingency analysis of mamytingencies is
performed, and the most important ones based on system reliafvlis/dre screened. Then
appropriate solution strategies are devised, i.e., in our casemtldecision trees are
developed to address every critical contingency screened.

In order to reduce the computational burden of contingency analysis, contingekicygr
methods are typically used in power system reliability assasisstudies. They help in fast
screening of the most critical set of contingencies for thoraungtlysis and planning. While
there are many deterministic ranking methods that considersnipact or severity of
contingencies [58, 59]; under the current highly probabilistic natungowafer system, a
contingency ranking method which does not consider the probability ohgentiies would
lead to misleading operational solutions strategies agairgirmeaconditionsThis is because

the risk posed by a contingency under a wide variety of operetingitions not merely depends on

its severity, but also on its probability of occurrenS@ we propose to developrisk based

contingency ranking processhat would eventually help in screening top contingencies
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leading to voltage collapse, where the risk index of a contingerestimated as the product
its severity over various operating conditions and its probability.

The decision tree based operational planning for multiple contingersidsrther
advanced by the proposed conceptcohtingency grouping The proposed contingency
grouping method will strike a balance between producing simple andagedrees, as well
as reducing the number of trees for multiple contingencies. mMhupigg of contingencies is
based on a novel criterion, known ®gressive entropy curvethat reflects the overlap
among various contingency’s effect on operating conditions, which is utrbkiional

methods based on geographical proximity.

1.4 DISSERTATIONORGANIZATION

The rest of this dissertation is organized as follows:

Chapter 2 presents the proposed efficient sampling strategy toatgeidatabase with
high information content for training decision trees. The chaptes@ detailed description
of the “information content” concept, and systematically presentdwhestage efficient
training database generation method constructed using Monte Carémoeanieduction
techniques. The efficient sampling approach developed is demonstratectram EHV
network to derive operating rules against voltage stability probl&hmes.chapter also gives
detailed account of extracting relevant historical data for awdystrom French SCADA
system.

Chapter 3 addresses the very important issue of capturing fireglsdaft multivariate
load distribution such as its non-parametric nature and the muit@lation in order to
generate realistic operating conditions using the Monte Carlplsenprocess. The chapter

also focuses on the development of fast state space chardictenmathod based on LHS of
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stress directions and linear sensitivity measures. The develdpzenefprocessing method
is applied on French EHV network for security assessment againstevettdulity problems,
and the results are analyzed in great detail. The chapter ladsls some light on the
simulation methodologies used to realize the fast characterization of paratage space.

Chapter 4 presents a comprehensive security assessment mettaorhaecision trees
for multiple contingencies. With earlier chapters as the backbmreerform the security
assessment, the crux of the chapter deals with two concepts tothildbmprehensive
multiple contingency security assessment process: risk basemgemay ranking and
contingency grouping. The chapter presents a detailed technicaiptiescof both the
concepts, and presents the application results for seven contirsgeosgdered in the west
region of French network.

Chapter 5 presents conclusions and significant contributions of this arakdiscusses

possible future works.
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CHAPTER 2 HIGH INFORMATION CONTENT DATABASE
GENERATION FOR DECISION TREE BASED OPERATIONAL

PLANNING

2.1 INTRODUCTION

Decision tree based inductive learning method serves as attia#r option for
preventive-control approach in power system security assessrhadentifies key pre-
contingency attributes that influence the post-contingency syapliknomena and provides
the corresponding acceptable scenario thresholds. These guidelineduatesdly applied to
classify any new pre-contingency scenario with respect fwogs-contingency performance,
thereby enabling maximum utilization of available resourcesowit compromising the

reliability of power system in real time.

2.2 MOTIVATION AND PROPOSAL

Database generation for training is the critical aspect obpesance of any data mining
based power system reliability studies. Generally a uniformamiom sampling of system
states is carried out by varying parameters such as éed, lunit commitment, system
topology, exchanges at the boarders, component availability etc.degroto their
independent probability distributions obtained from projected historical[@i@te5, 38, 42,
43, 60] or forecasted 24-hour data [26, 27, 28, 29]. Then, various scenarioaldatesl for
a pre-specified set of contingencies or faults. This stagerisrally very tedious and time
consuming, as there could be a tremendously large number of combinati@msbles and
topologies, even within a ‘study region’ (about 5000-15000 samples fotisicsdly valid

study [10]). Some studies [25, 26, 28] expend extra computation adtetating the
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operational rules to increase the unstable (rare) situationstabada to improve the
accuracy. While this would reduce one type of error, namely ‘rigkimisclassifying
unacceptable scenario as acceptable, it does not address therothemaeely ‘false alarm’
due to misclassifying acceptable scenario as unacceptableo\woiethe sampled unstable
situations are unrealistic or unlikely, then it could make the mdgsconservative, i.e either
costly to respect or sending irrelevant warning regardingrtieelimit of the system (more
false alarms) by misclassifying acceptable scenarios as uredaeept

In this chapter, we propose to develop an efficient sampling methodrterage
influential operating conditions that captures high information contemt Hetter
classification and also reduces computing requirements. Thisierfficsampling is
constructed using the Monte Carlo Variance Reduction (MCVR) tqabai Among the
mostly used MCVR methods, control variate and antithetic varade advantage of the
correlation between certain random variables to obtain variancetimdun statistical
estimation studies. Stratification method and importance samplitigpchee-orient the way
the random numbers are generated, i.e., alters the sampling distrijgli, 62]. The
proposed efficient sampling method is constructed using the impogang#ing method for
its ability to bias the Monte Carlo sampling towards the infiaénégion identified a-priori;
and generate samples within the influential region preservingrii@al relative likelihood
of the operatingonditions.

In order to sample the influential operating conditions, the opgragtarameter state
space must be characterized with respect to post-contingerioynpaance first. C. Singh et.
al. [47] proposed a state space pruning method to identify the impogton in a discrete

parameter space composed of generation levels and transmisgiotapacities under a
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single load level for system adequacy assessment. X. Yu 3proposed self-organized
mapping, a unsupervised neural network, together with Monte Canldagion (MCS) to
characterize the transmission line state space. The methowvéhhave developed uses
stratified sampling to characterize operational parameter state. spa

The remaining parts of this chapter are organized as follovesioB8€2.3 describes the
concept “information content” in the context of this work. Section 2.4epteghe technical
approach of the proposed high information contained training databasetgmm Section
2.5 demonstrates the application in deriving operational rules for vatalygity problem in

Brittany region of RTE’s system, and presents results. Section 2.6 concludes.

2.3HIGH INFORMATION CONTENT

The decision tree learning algorithm requires a databasédbajood representation of
all the class values, so that it can effectively clgss#w instances and not overlook the less
representative classes. So, for a two-class problem, a gooesertation of operating
conditions on both sides of the class boundary is required. Also, not epergting
condition on both sides of the class boundary contributes equally to thdiragpetde
derivation process. For instance, consider sampling some operatingiccendiefined in
terms of variations in Loads A and B as shown in Fig. 2.1a. Pedomingency analysis to
find the post-contingency voltage stability performance. A suitallee can be defined by
line R that effectively partitions the operating region with ptat@le post contingency
performance from unacceptable performance. We refer to thisdinlee security boundary.
Now, if more operating conditions are sampled as shown in Fig. 2.1b, rtidesadrawn
near to the security boundary influences the rule making proaassthan the samples away

from the boundary. This is evident from the consequent rule changengshiriie R) that is
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necessary as shown in F@lc. So it is very essential that the database oentaperating

conditions nearer to the security boundary winer granularity, since they convey mu

information on the variability of the performanceasure, which thereby enables a cleal

decision making on the acceptability of any opagatondition. Furthermore, if the some

the operating conditions wilunacceptable performance near the rule line Rgn2.1c are

less likely to occur in reality, then the rule liRemay be shifted slightly upwards to exp

more operating conditions for economic reasonshasvn in Fig 2.1d. Hence the desire

influential operating conditions are obtained by samplaqrording to the probabilit

distribution of the boundary region, which is theaded region in Fi 2.1d where there is

high uncertainty in the acceptability of any opergtcondition. This will also nsure a very

good representation of both the classes in thebdataat a reduced computational

compared to sampling from the entire operationatameter state space probabi

distribution.
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Fig. 2.1 High information content region

In this work Entropy, the most commonly used information theoretic measurettie

Entropy(S) = > - p, log, p,
i=1

their probability distributionEntropyis given by equation (2.1)

has the maximum entropy, produced at reduced catipnél cos.

information contained in a distributic is used to quantify information contein a database

[64]. It isa function of class proportio, when operating conditions are sampled accordil

2.1)

where,Sis training data, ¢ is the number of classes,p;is the proportion oS classified as
classi. Given that thesecurity boundary generally falls in the lower gabliity region of the

operating parameter state space, a database d¢ongtaamples within the boundary regi
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2.4 TECHNICAL APPROACH

The overall flowchart of risk-based planning approach is shown by2Eig along with

the proposed efficient sampling approach. The proposed algorithm carfstate stages,

where stage | utilizes a form of stratified sampling to appnately identify the boundary

region and stage Il utilizes importance sampling to biasahgbng towards the boundary

region.

».
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Decision Tree Rule
Formation and Validation

Fig. 2.2 Proposed approach
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The database generation is performed for every critical contipgerae group of critical
contingencies screened, as depicted by the contingency loopcdimagy loop feeds back
information about the region of sampling state space requiring emphasis in training
database, in order to reduce decision tree misclassificatohsrgrove the accuracy. This
chapter focuses on the proposed efficient sampling method. Chaptémpdesdnt proposed
contributions in multiple contingencies analysis and decision makinggzaséng decision
tree.
2.4.1Stage | - Identification of boundary region

Consider the sampling space to be an N-dimensional hypercube, wieteeNnumber
of selected operating parameters to be used in the study (loadisctoon levels, etc.). Stage
| divides the hypercube into M smaller hybercubes. The situatiothhé simplest case, N=2,

with M=20, is illustrated in Fig. 2.3.

Transfer Path A (MW) >

Transfer Path B (MW) 2>

Fig. 2.3 lllustration of stratified sampling
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Stage | selects the center point of each of the M smallgerbybes and performs an
assessment to identify post-contingency performance for each poiother words, a first
set of simulations is launched on a limited number M of networktsihs|aamong all the
possible ones at a coarse resolution. A typical result of suampliag is shown in Fig. 2.4,
where the enclosure contains all hypercubes that neighbor exchipe of the opposite

performance level, forming a first estimation of the boundary region.
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Transfer Path B (MW) =

O Acceptable post-

B Unacceptable post-
contingencv nerformance

contingency performance

Fig. 2.4 lllustration of stage |
2.4.2Stage Il — Sampling
The standard Monte Carlo sampling approach draws values for pgaameter in
proportion to the assigned distribution. Given the previous knowledge of the bpuagian

from Stage |, biasing the sampling process towards the boundaoy neging importance

sampling method maximizes the information content.
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2.4.2.1importance Sampling Variance Reduction
In both adequacy studies and risk-based security planning studies, miiéycqpfanterest

is probability of unacceptable performance, €Y ~ unacceptable eveniS).
t

P(Y <t) = jf(y)dy (2.2)

— 00

where, y=t denotes the threshold performance level such tlyak t is unacceptable

performance. The indicator functidfy) denoting region of intereb(y) is defined as,

h( )—I(Y<t)— 1if Y<t

= “loif vt (23)
and hence,

PY <) = [R(y) f(y)dy = E(h(Y))= 3 h(y,) 24

The above expectation function gives crude Monte Carlo estimd&tjnWwhereyi are
Monte Carlo samples taken from the distributigy), the post-contingency performance
index probability distribution. This estimation has a variance &dgoc with it, as the
guantity h(y,) varies withy;. Importance sampling attempts to reduce the variance of the

crude Monte Carlo estimator by changing the distribution fromwthie actual sampling is
carried out. Suppose it is possible to find a distribugign such thag(y)e h(y) f(y ) then

the variance of estimation can be reduced by reformulating the expectatibarfas;

P(Y <) = [h(y)f () 2 ay - E(h(Y)f(Y)j:Z“: h(y) f (%)

a(y) a(Y) = a(y;) (2.5)

wherey, are Monte Carlo samples drawn from the distributidy), and this ensures the

ity| DY) £ () ' '
quantlty[ A (yiJ is almost constant wity.
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By choosing the sampling distributiggdy) this way, the probability mass is redistributed
according to the relative importanceyods measured by the functidiy)| f(y) [61].
2.4.2.2Proposed Efficient Sample Generation

The property of importance sampling to bias the sampling usingaortance function
g(y) towards an area of interest, as discussed above is used to g@m&rantial operating
conditions from operational state spaxen our method. The joint probability distribution of
the operational parameter spdg can be obtained from historical data [66].

Once we havea-priori information abouf(x), stage-1 operation provides the regionXin
through which the boundary most likely occurs and therefore ideraibipsoximately thex-
space in which we want to bias the sample generation. The @giaierest for sampling in

terms of indicator function is,

1if Y(X)e S

h(X)=1(X €S)= {o YO0 S (2.6)

where S is the boundary region. For instance, in a univariate casanveefine it a&={x:

x1 <x<x2}, as shown in Fig. 2.5.

X x1 x2

Fig. 2.5 Boundary region in operating parameter distribution f(x)
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The importance function or the sampling distributygr) can be constructed proportional
to h(x)| f(x) i.e., focusing on the region S &k). In general, the importance sampling

density can be expressed as,

009 =P 1,0)* [(x 9+ A= P * (9 * (xS o

wherep controls the biasing satisfying the probability condiisti, f (x) is the probability
density function of the boundary region, angx) is the probability distribution function of
the region outside boundary.

We adopt a composition algorithm to generate samples from thidbalistn [67, 68]. If
we setp=0.75, then 75% of the points can be expected from region S. This kind ofdupwar
scaling in boundary region probability distribution by the importance titmay(x) is

depicted by Fig 2.6.

a(x)
0.4

o £

Fig. 2.6 Generic importance sampling distribution functgx)
Hencep serves as sliding parameters that control the extent of ¢iasi, sliding

between a completely operational stugh=1, requiring most influential points for rule
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making) to investment planning study=0, requiring a wide range of operating conditions).
The optimal importance sampling densifx) for our operational study is whe¥1, i.e.,
full bias towards the boundary region, expressed as the original state probability

distribution conditional on the boundary region,

g(x)=f(x|xe S)=%f(x) (2.8)

a=[_f(xdx 2.9)

Since the scaling factoa” is a probability and therefore, must obeya@l, equation
(2.9) represents an upwards scaling. i.e., the probability distribgtatered such that more

samples are from the region of interest.

2.5NUMERICAL RESULTS

2.5.1System Description

The proposed sampling approach is applied for a decision tree legsetlysassessment
study for deriving operating rules against voltage stability ssue SEO regionSysteme
Eléctrigue OuestWest France, Brittany), a voltage security-limited regbbrthe French
EHV system containing 5331 buses with 432 generators supplying 83782 MW.

Figure 2.7 shows 400 KV network of the French system, where it caedrethat the
Brittany region (in grey) is pretty weakly interconnected. Bgrwinter periods, when
demand peaks, the system gets close to voltage collapse linmiowr the local
production capabilities being far lower than the local consumptiopté the EHV grid
under pressure as the needed power comes from remote locatiomallyerieading to

cascading phenomenon at the sub voltage levels. The red star mdioabar fault at 225
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KV Cordemais bus, which is the most credible contingency in thitaBy region during

winter period.
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Fig. 2.7 French 400 KV network with SEO and Brittany highlighted
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So in order to avoid the risk of collapse situations under such centipgevents, the
operator may have to resort to expensive preventive measures sstalitiag up close yet
expensive production units. It is therefore very important to asksesssks of a network
situation correctly considering uncertainties in operating comditiand obtain operating
rules built off-line with decision trees, that aid to take right decision at rght t
2.5.2Study Specifications

Data preparation: The historical database of French EHV power grid systemhior t

study is extracted from records made every 15 seconds on the nbiwWS€kADA, as shown
by Fig. 2.8. The data for each month of the year is stored in mtemyfiles containing
respecting columns of data:
e Time datai.e. the year, the month, the day, the hour, the minute, the day of the
week of the recording;
e Node datai.e. voltage, voltage level, active and reactive consumption and
production per node; and
e Branch dataindicating the origin and the end nodes, their voltage level, if they
are connected or not and the active and reactive transit considetsathat
extremities.
Figure 2.9 shows the 2007 annual load data in SEO region of French tgaictexk from
the historical database. The load starts to increase muchedhe October, as the winter
comes closer, and decreases in February. The heavily loaded fgethe winter, during
December, January, and February months. A lot of loads were sttedlnmonth of January
under stressful conditions motivated by economic and reliability derstions for system

operation, which explains the dip in the load during that month.
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CIDATA

) 2006

= ) zo07
) 2007_1
) 2007_2,

) 2007_4
) 2007 5
) 2007_6
) 2007_7
) 2007_&
[7) 2007_%
) 2007_10
) 2007_11
) 2007_12

) 2007_3 -

[Z] 2007_1 1 0_0.kxt
[Z] 2007 1 1 0 15.txt
[Z] 2007_1 1 0_30.kxt
[Z] 2007 1 1 0 _45.txt
[Z] 2007_1 1 1 0.kxt
[Z] 2007 1 1 1 30.bxt
[Z] 2007_1 1 1 _45.bxt
[Z] 2007_1 1 2 0.bxt
[Z] 2007_1 1 2 15.kxt
[Z] z007_1_1 2 _30.bxt
[Z] 2007_1 1 2 45.bxt
[Z] 2007_1_1 3 0.bxt

El2an7 1 1 2 1C ko

Fig. 2.8 French EHV historical data from SCADA

The loading pattern over the year changes depending upon various $actoiss, if it is

winter or summer, week or week-end, day or night, peak-hours opeaft hours etc.

Typically, the load is heavier during the daytime of weekdaywiimer, as shown by the

statistics in Table 2.1. There are two peak-hours during a daintaryi.e.,

in the morning

around 8/9 am and the evening around 7.30/8 pm; and there is a secondary pesluhdur a

10/10.30 pm, as shown by Fig. 2.10 where a typical behaviour of the load tymca

winter day (' February 2007) is depicted.
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Fig. 2.9 2007 annual SEO load
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Mean Median Max

Full year 7729 7640 1360Y
Summer (June to Sept.) 6609 6600 9182
Winter (October to march) 8585 8539 1360Y
Winter (December to Feb.) 9290 9307 1360Y
Winter (December to Feb.) — Week days 9758 9823 1360Y
Winter (December to Feb.) - Week 8hr to 22h.0350 10284 13607

Therefore, these heavily loaded periods are the most constrairtgrgns of voltage, and
the study focuses on them for generating samples of operatimditions in the voltage
stability study. Therefore, MCS is not performed on the entiae gistribution, but only on

those relevant periods of year depending on the type of stability problem unddecaticsn.
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Fig. 2.10 Load behavior on February 7, 2007 — A typical winter day

Sampling: The pre-contingency operating conditions are generated from admsseby
considering random changes of key parameters. The baseca&® aieBvork considered
corresponds to 2006/2007 winter with 13500 MW baseload. The most constraining
contingency is the Cordemais busbar fault in the Brittany Hretleads to trip nearby

generation units. Under extreme conditions, this fault may lead Brittany voltage
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collapse. The parameters that we play on to generate basecaswtal SEO load, SVC
unavailability and generator group unavailability in Brittany afdee unavailability of main
production units, which includes nuclear groups in Civaux, Blayais, Stshiad@amanville,
and Chinon are sampled such that each of these 5 unavailabilitiepssented in 176of
the total basecases. There are 2 SVCs in the Brittanyrrégi, at Plaine-Haute and Poteau-
Rouge, and their unavailabilities are sampled such that 25% ofafles tiave them both,
25% do not have them both and 50% have only one of them. The total Biizhy
continuous parameter, is sampled using our proposed efficient samm@thgdnThe load
sampling is done keeping power factor constant. All the load sarapesystematically
combined with SVC and generator group unavailabilities respecting ¢éspctive sampling
laws to form various basecases.

Contingency analysis and database generatidfor each basecase, an optimal power

flow is performed, minimizing the production cost under voltage, curflemt,constraints in
N. Abnormal/unrealistic cases that results in MW shedding or NMadalition to achieve
convergence or do not converge are thrown off. Then consequences offaullevent are
studied with a quasi steady state simulation (QSSS) tool, whersimulation is run for
1500s with 10s step size, and the contingency is applied at 900s. 8&semarcharacterized
as unacceptable if any of SEO EHV bus voltage falls below 0.8 gheaimulation does
not converge. Then a learning dataset is formed using pre-camtingétributes of every
scenario (sampled at 890s of QSSS) that drives voltage stgiléggomenon, such as
voltages, active/reactive power flows, productions etc, and theirctespelassifications.

Then security rules are produced from decision tree to detect ablwolmdtage collapse
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situation contingent upon the severe event. An independent testusetdito validate the
tree.

The software tools used in the study are:

1. ASSESS [69] - Special platform for statistical and probdlulisnalyses of power
networks, that has the capability to generate many scenarios rgnolosystematically to
model system uncertainties

2. TROPIC [69] - Optimal Power Flow tool, embedded with ASSES$reate initial
base cases

3. ASTRE [69] - Simulating slow dynamic phenomena (QSSS), embedddd wi
ASSESS

4.SAS - Statistical analysis and database processing

5. ORANGE [32], WEKA [33] - Decision tree tools
2.5.3Efficient Sampling of Load Parameter

As mentioned in the section 2.5.2, the variable part of the systemdoaahtinuous
parameter that will accommodate the various uncertaintiéseiroperating conditions was
sampled according to the proposed efficient sampling method. The Idexnisthetically
distributed among all the individual loads, i.e., a constant stress direction.

In order to find the boundary region in the load state spaceat#istl sampling (100
MW interval) of the load was done, many variants were fornyeslybtematically combining
with discrete variables, i.e., SVC and generator unavailability. Qgenicy analysis was
performed for every variant and each scenario is classiBeacceptable and unacceptable.
Figure 2.11 shows the characterization of boundary region in the lo&dspi@ce with

respect to post-contingency performance. The boundary region captugingriability of
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performance measure is the defined by the range of values epet®#860 MW and

12600 MW.

Frequency [T Acceptable Scenario
70
60
50

[ Unacceptable Scenario

Boundary
40 Region
30

20

101

0-31625.00 11925.00 12225.00 12525.00 12625.00 13125.00
11775.00 12075.00 12375.00 12675.00 12975.00 13275.00

P Load

Fig. 2.11 Stratified sampling defining boundary region

The variable part of the system load, a univariate variablewsla normal distribution
N(9883.6, 979583)according to 2006-07 historical data of peak hours (weekdays 8hr to
22hr) during winter period, as shown in Fig 2.12. Figure 2.12 also sti@vprobability
distribution of the boundary region identified by stage-I. Importaacgpsing is performed
on the probability distribution of the load with = 1 in equation (2.7), to bias sampling

towards the boundary region.
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Fig. 2.12 Probability distribution of variable part of the system load

2.5.4Results

There are many system attributes that can be included imgalataset as potential rule
attributes. Some of them that are influential for a voltage stability sttlde 400 KV node
voltages, active and reactive power reserves of the production grog#sGnactive and
reactive power flows in tie lines of SEO, net inter-area transactions, etc

Table 2.2 shows the effectiveness of various attribute sets nrs tef classification
accuracy and error rates. Accuracy can be defined as the pgecait@oints correctly
classified, false alarm rate can be defined as the rattotaff misclassified unacceptable
instances among all unacceptable classifications, and riskisrdédined as the ratio of total

misclassified acceptable instances among all acceptablsificisons. Attribute set
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“Voltage” contains 46 400 KV node voltages, “P reserve” contains 10 a@engroup’s and
total SEO real power reserve, “Q flow” contains various attefsuch as 12 400 KV tie line
reactive flows from SEO region to other regions, 4 interareakd¥0€eactive transfers, and
net reactive power export; and “Q reserve” contains 10 generaiap’grand total SEO
(including SVCs) reactive power reserve.

The training database obtained by sampling from the boundary regiaains 940
operating conditions. The test set includes 459 instances unse@mingtset that covers a
wide range of operating conditions, with some also falling witlnboundary region, for it
is very important to obtain decision rules that classify conditioas the threshold correctly.
From Table 2.2, we can see that “Q reserve” is a good attribtitdomwest risk among high
accuracy attributes. This conclusion meets local operators’ erpes that Q reserves give

warning prior any voltage drop.

Table 2.2 Attribute set performance comparison

Attribute set Accuracy (%) False Alarm Risk

Voltage 98.4 0.013 0.023
P reserve 90.1 0.059 0.201
Q flow 97.34 0.025 0.03

Q reserve 99.04 0.006 0.019
Voltage + Q flow 98.83 0.01 0.015
Voltage + Q reserve 99.04 0.004 0.023
Voltage + Q reserve + Q flow 99.04 0.004 0.023

Figures 2.13 (a), (b), (c), (d) show the total SEO load probaldigtribution from

sampled operating conditions as the sliding faptimicreases from base valuefir) to 1.
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Fig. 2.13 Effect op on sampled total SEO load probability distribution

This study was performed to investigate the influence of tlknglifactorp on rule
performance. Table 2.3 shows the results, when validated usingstheéatasementioned
earlier. A slight bias in the test set distribution towards security boynelgion is to validate
the operational rule’s classification performance against arisicenarios and also to show
the significance of generating high information contained trainit@pdae. Nevertheless the
test set is still independent due to the fact that the testing samples asgegerendomly and
the instances are unseen by the training set.

In Table 2.3, we can see that the training database biasing tol@udgary region

increases as sliding factég increases from default value of about 15% (in the original
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distribution) to 100%, as observed from the fact that the representati unacceptable

scenarios (Un) relative to acceptable scenarios (A) ingdasthe database of same size.

Consequently the value of entropy, computed according to equation (lurmgathe

information content in the database, also increases as theesageplerated from boundary

region increases.

Table 2.3 Performance comparisons between sampling bias

Bias, p (%) A:Un

Entropy Accuracy (%)

False Alarm Risk

15 (base) | 889:51  0.3042 83.19 0.033 0.527
25 825:115 0.5361 95.21 0.028 0.087
50 781:159  0.6558 96.17 0.027 0.068
75 738:202  0.7507 97.55 0.016 0.045
100 676:264 0.8566 99.04 0.004 0.023

Figure 2.14 shows the increase in rule accuracy, and Fig. 2.15 #tedescrease in false

alarm and risk rate, with increase in bias towards boundaryaiifj that the training set

generated within boundary can classify well wide-range ofabipgy conditions. This is very

beneficial for an operational planning study. Similarly, by &lytadjustingk;, we can draw

operating conditions that cover a wide range in parametersgtate suitable for investment

planning studies.
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Fig. 2.15Error ratesvs. sampling bias towards boundary
Figure 2.16shows the plot between classification accuracyenitbpy as the bias fact
ki increases from base value to 100%, for a givenbdata size of 940, i.e., for a const

It can be seen that thesifieation accuracy increases as
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training database entropy increases. This indicates thatgieea computation the database

that exclusively captures the variability of performance mmeaacross the boundary region

performs well.

100
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Accuracy
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Accuracy Vs Entropy

_Ap=100
p=75
p=25 p=50
e / === A rccuracy Vs Entropy
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0 0.2 04 06 08

Entropy (Information Content)

Fig. 2.16 Accuracy vs. database entropy, for a given computation

Table 2.4 shows the result of another study comparing three diffeempling

approaches, namely, sampling from the entire state space agcaadiits probability

distribution, uniform sampling of boundary region, and importance sampling of d&gund

region. It can be seen that the accuracy is more and theratesrare less for importance

sampling, even with decreased computation, as depicted by Fig. 2.12 Eifjdralso shows

that by increasing computation deliberately, higher accuracy can be obtatinét portance

sampling strategy.
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Table 2.4Performance compariss between different samplingategie

gk

Sampling Size Accuracy (%) False Alarm  Risk
Entire Space 940 83.19 0.028  0.527
Boundary Uniform 800 92.35 0.11 0.043
Boundary IS-I 470 94.89 0.028 0.11
Boundary IS-11 752 96.81 0.013 0.08
Boundary IS-111 940 99.04 0.004  0.023

Samniling Camnaricon
-’HIII!‘III!D '.vlll!i’“l % 10
10N _
LSS a
5
o
R
2 05 @
¢ 2
g 20 _
a ® Entire Space
% ® Uniform
= 8 ® Importance Sampling o
a0 | | 1
400 600 800 1000
Computation (# of Points)

Fig. 217 Comparison between sampling strategies

The above results show the effectiveness of impogasampling based strategy

generate efficient training set for decision tresdd learning studies. It was observed

with lesser computation more information contenn be generated, and conseque

improvement of operating rule’s performance is pumes The developed training databi

generation method can be applied for other datangiitechnique as show in Table 2.5,

and alsagainst other power system secuproblems.
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Table 2.5 Importance sampling for various data mining techniques

Bias factor, p Naive Bayes SVM* IB5' DT*

0.25 75.79 96.48 94.07 95.21
0.5 78.71 98.28 9545 096.17

0.75 83.43 98.71 97.16 97.55
1 92.78 99.65 97.68 99.04

Typically, a rule is desired to be simple and efficient endisgbeparate unacceptable
situations from acceptable ones, such that it leads to no risks amdizes the false alarms.
The risk corresponding to importance sampling method (No.5) shown in Tahigtl2.940
samples is 0.023%. One way to reduce risks is to use a costveetatsification, i.e.,
specifying a cost for misclassification. By making the costigk twice the cost of false
alarm, the risk percentage is reduced to 0.011%, while false alarm sligilggas to 0.01%
from 0.004%. The cost of misclassification reduces by 2 units, under the assumptists of ¢

Another way to reduce risk is to have a feedback loop from thevalil#ation stage to
sample generation stage, which gives appropriate informatiorcrtease the representation
of expensive misclassified conditions in the database, so that tieodetree is able to
classify them properly. In real time application, the misdiass or strange (i.e., in
comparison with the historical loading conditions) operating conditions cdladgeed and
then used to update the decision rules by updating the training slataith the flagged

instances.

[1]1 SVM - support vector machine; B8 nearesb-neighbour instances based learning; DT - decisim t
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2.6 CONCLUSIONS

The proposed efficient sampling method based on importance sampling aeaof the
first to be used in power systems for making decision tree lbeaedng methods effective.
The thrust of the proposed sampling procedure is to re-orient thglisg process using
importance sampling to focus more heavily on points for which post-contipge
performance is close to the threshold forming the boundary regiordhttins operating
conditions influential for rule formation. The primary goal is tor@ase the information
content in the learning database while reducing the computing neguite and
consequently obtain operational rules that are more accurate feringagl-time situations.
The results show that the generated training database enmalesesaccuracy giving less

error rates when compared with traditional sampling approaches.
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CHAPTER 3 EFFICIENT PROCESSING OF SYSTEM SCENARIOS
IN MULTIVARIATE NON-PARAMETRIC OPERATING PARAMETER

DISTRIBUTION

3.1INTRODUCTION

Decision tree based planning tools provide operators with the mosttampgystem
attributes that guide them in deciding as to what situation reqoperator action. Chapter 2
focused on the key aspect of this approach, namely devising arergffidonte Carlo
sampling approach to capture high information content and reduce computatisina the
database generation step. The developed efficient sampling $wassalso illustrated on
French EHV network. This chapter focuses on the data processing (poepatage prior to
the MCS stage, and the techniques to achieve the proposed efficiere Ckmd sampling

approach are appropriately constructed.

3.2 MOTIVATION AND PROPOSAL

In chapter 2, the global load was distributed homothetically (i.epgption of individual
loads to global load same as basecase) along the most probabte ditection. This is
typically done in various studies, where samples of representatheeds®es are drawn for
various loading conditions, i.e., peak, mid, low etc., assuming a partload stress pattern.
Some of the motivations for such assumption are:

1. The assumed stress direction is the most likely one as indicated by the dilislatiac

2. To reduce the computational burden.

The sampling procedure becomes computationally very burdensome vieny darge

dimensional sampling state space, if the individual load’s mutuetlation information is
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taken into accounfior accommodating multiple stress directi. So, in order tcprovide a
more reasonablesampling spac¢ which would reduce the computat, a very strong
assumption is madiat all loads vary in proportion to the total,tkat the load at any bii

I:>Li 0

TO

maintains a constant percentage of total loadtastmad changes, i. P, = P; , Where

PLio andPq are the busload and total load, respectively, in the base. In the language ¢
voltage instability analysis, these assumptionsiamo the definition of a particulistress
directionthrough the space of possible load inses.

So the load uncertainty is addressed only in tesing single variable: total loadPr).
This is illustrated in Fig. 3.1, where we considemuch simplified power system with or

two load buses, and the mean valuPr is the baseload of 1000 MW.
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Fig. 3.1 Sample points ofrfn 2-dimensional parameter space with assumed stressidr
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Pt is assumed to be distributed normally about itsrmedue, and the stress directior
defined by the assumed proportions of 60% and 4f%o&ds 1 and 2 respectiveSo as the
proposed efficient sampling approach was illusttatechapter 2, thstrdified samplingis
performedonly in the univariate spa of total system load to identifhié¢ boundary region ¢
shown in Fig. 2 and importance sampling is performed to biasstrapling towards thi

region.
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i
600 PLoadl 200

15300

Fig. 3.2Boundary identification within sample space of @erg points shown in-D

However, n reality the individual loads may vary along npiki stress directiol, and
confining tothe single stress direction mresult in samplingoo narrowly Consider Fig.
3.3 which shows an operating parameter space forea-load power system (and thereft
it is a 3dimensional figure). As discussed previously, samgpirom a single stress directis

(i.e., the expectedtress directic) will result in acollinear set of points within the-D
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figure, as shown by the line with red circles in Fig. 3.3. Howetheme may exist other

operating points in the sample space, close to but not on the expgetsidirection line,

that are reasonably likely to occur compared to the points orethkne. For example, we

may conceive of a region surrounding the expected stress dirkogaimat contains points

comprising a 0.95 probability space, i.e., the probability of occurrencan abperating

condition outside that region is 0.05. Such a region is conceptualized ihrie-

dimensional picture of Fig. 3.3 as the “cylinder” confined by the nieebdashed lines. The

limits that define the boundary (between acceptable/unacceptabiairdd would then

become a surface cutting through this cylinder, as illustrated by the girdface in Fig. 3.3.

Pload2

PLoad3 ..~ |

s "Ea-cpected Stress _dir-a-:tiun

(cylindrical) . .

: .. Boundary limits dividing

_....acceptable/unacceptable region .

: Bﬁmdaryﬂeﬁuﬁ._ _

Ploadl

Fig. 3.3 Prospective boundary region in 3-D operating parameter sample space
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Through the stratified sampling stage we would winbbtain the boundary regic

depicted by the 3D purple region in F3.3. Then the importance sampling could be apg

to sample points within this boundary region, whwbuld capture maximum infornion

content including the relative likelihood of samplaints

The same concept can be illustrated as-Dimensional example, depicted in F3.4

below. Even though the points seem to be follovargingle primary stress pattern, there

other sampleooints in the multivariate space that would be with defined probabilit

space.So it is important tcconsider the multivariate distribution of loads dapture the

boundary region effectively, and capture high infation conter. Otherwise single stress

direction assumption will identify only some portiof boundary, and consequently rules

derived from sucha database may face challenges when applied téstreabperating

conditions, where we could expect loads to follow atress patter

§I‘J.nd!§

| Boundary Region

i
L PLoad ) 200

Fig. 3.4Prospective boundary region2-D operating parameter sample sy
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Therefore, it is necessary to capture inter-load correlatimms historical information
while sampling from multivariate load distribution to create the trainingbdae, where such
finer details will have crucial impact in a decision treddlity to find rules suitable for
realistic scenarios. While we can be assured of more iafoym content, it is likely to
increase computing requirements; especially for boundary idatitiicstage using stratified
sampling. Dobson et. al. [70] proposed a direct and iterative method tdahBndlosest
voltage collapse point with reduced computation in the hyperspacedeffrieads. But the
method’s applicability to a specific distribution of loading conditionghe hyperspace was
not shown, and doubts were also cast over its applicability to a pemger system with
dimension of the hyperspace going in 100s as we are dealing idigbertation. In this
chapter, we propose Monte Carlo simulation based method to fincathitytboundary in a
multivariate load state space at a highly reduced computatemalement. The reduction in
computational cost is possible by the use of Latin hypercube isan{pHS) of homothetic
stress directions and linear sensitivities. The multivariatel Istate space for a given
historical distribution is then quickly characterized, under various catibns of SVC and
generator unavailability states. Then, we apply importance sagnai bias the sampling
towards the identified boundary region.

In this study, we propose to model inter-load correlations in Monté Ganulation
using copulas [71], unlike many studies that approximate thelo#dreorrelations using
multivariate Normal distribution for computational purposes. Copulagarerated based on
non-parametric historical load distribution, and it enables sampdialistic scenarios. The

proposed method is envisioned to reduce the computational cost, while prottacimg
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database with high information content that enables deriving opgratlas with better

knowledge of boundary limits, leading to higher classification accuracy, and eicandes.
The remaining parts of this chapter are organized as followtioB8€3.3 presents the

technical approach, section 3.4 presents the application results pofheesed method in a

voltage stability assessment for French power system, and section 3.5 concludes

3.3 TECHNICAL APPROACH

The efficient sampling algorithm proposed consists of two stagege sl to
approximately identify the boundary region and stage Il to biasaimplsig towards the

boundary region as shown in Fig. 3.5.

Select Operating Parameters and Assign
Distributions

Database

Decision Tree Rule Formation and
validation

Fig. 3.5 Proposed efficient sampling algorithm

3.3.1Stage | - Identification of Boundary Region

A straight forward way to perform state space charact@irzds to divide the N-
dimensional hypercube, where N is the number of selected operatmmgtars, into M
smaller hypercubes, select the center point of each of thedWlesrhypercubes and perform

an assessment to identify post-contingency performantec@Mtingency simulations), as
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described in chapter 2. But for large N, there is a curse ofndiomlity, resulting in very
large computational cost. So this section develops a Latin Hyperauiy@isg method that
uses linear sensitivity information to apply the developed efficGampling approach in a
computationally effective manner.

3.3.1.1Fast Boundary Region ldentification using Linear Sensitivity Information

For some performance measures, it is possible to use lineativéerss to efficiently
obtain improved approximation of the boundary between acceptable andeptasbte
performance, as shown in Fig. 2.4 by the dotted line. This sigmiffcaeduces the
computation burden in characterizing a multi-dimensional operationaineder state space.
For voltage stability related problems, voltage stability nma§iSM) can be used as the
performance measure and hence voltage stability margin sdresti{ir2, 73, 74] with
respect to operational parameters such as individual |68@V/0P,), generator availability,
etc. can be used to identify the boundary.

Voltage Stability Margin: Voltage stability margin is defined as the amount of

additional load in a specific pattern of load increase (also termsestress direction) that
would cause voltage instability as shown in Fig. 3.6. It is computed tlsngontinuation
power flow (CPF) method. Contingencies such as unexpected componens gt ator,
transformer, transmission line etc.) in an electric powstesn often reduce the voltage
stability margin [75, 76], and may cause the voltage stabilityggimao be negative (i.e.
voltage instability) if they are severe. Figure 3.6 shows the gelsability margin under

different operating conditions.
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Mo: normal voltage stability margin
Mi: reduced voltage stability margin
Mz: increased voltage stability margin

normal

control

..

Voltage

Real Power

Fig. 3.6 Voltage stability margin under different conditions [77]

Voltage Stability Margin Sensitivity: The sensitivity of voltage stability margin refers

to how much the stability margin changes for a small changgstem parameters such as P
and Q bus injections, regulated bus voltages, Bus shunt capacitanceefigsecapacitance
etc. It is computed as a by-product of the CPF computation téhiendoltage collapse point,
where the eigenvalues of the jacobian at the critical collppsg would give these linear
sensitivities. Sensitivity computations have been typically usedwo major purposes,
contingency ranking and evaluating control action effectiveness [78].

Continuation Power Flow and sensitivity_ computation: Let the steady state of the

power system satisfying a set of equations in the vector form be,
where, X is the vector of state variables, p is any paranmetee power system steady state

equations such as demand and base generation or the susceptance aapsiuitotrs or the
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reactance of series capacitors, the state vectof, dadotes the system load/generation level
called the scalar bifurcation parameter. The system reactaseaof voltage collapse, when

A hits its maximum value (the nose point of the system PV puarel the value of the
bifurcation parameter is equal A6 For this reason, the system equation at equilibrium state

is parameterized by this bifurcation paramétas shown below.

R =0+ KR, (3.2)
Q =@+ K A)Qo (3.3)
Ry = @+ Ky )Ry (3.4)

where,Pjjo andQjp are the initial loading conditions at the base case correspotaling
2=0. Kjpi andKq; are factors characterizing the load increase patterngstnextion).Pg is
the real power generation at huat the base caskg represents the generator load pick-up
factor.

When system parameters are changed, the total transfer dgpaitiilprobably increase

or decrease. Reference [79] explains margin sensitivity in thmefwork of DAE

formulation,
x=F (XY, D) (3.5)
0= G(X! Y, p) (36)

n m
where x are the state variables= R ; y are the algebraic variablese R; p are the
- . I - . -
independent variables or parameterse R ; f are the differential equations

n m | n n m | m
f :R*R*R—> R ; and g are the algebraic equatiansR* R* R — R.
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F
Wi ,w;,>[ ]
g G (3.7)

P B T T Fl
W, W,
wre 5
where w are the left eigenvectors of the Jacobian at the nose point.
Onced4/dP is computed, we will first get the bifurcation parameter estimation as

At =% ap (3.8)
oP

For a power system model using ordinary algebraic equations, the tfargeint

sensitivity with respect to the control varialgeevaluated at the saddle-node bifurcation

point is
, =
or __WF, (3.9)
o WE

where w is the left eigenvector corresponding to the zero eigenvalue o$yttem

Jacobiarfy, F; is the derivative oF with respect to the bifurcation parametemnd F, is the

derivative ofF with respect to the control variable parameter

This margin sensitivity gives the first order partial demxatin the Taylor series
expansion of 4 as a nonlinear function of P, which describes the hypersiifadée
bifurcation parameter sensitivity will allow us to know, when sgaemeters are varied,
how the system will move along the hypersurfacen the vicinity of the current instability
point denoted by..

The voltage stability margin can be expressed as [77]

M=3R -2 Ro=42 K Py (3.10)
i=1 i=1 i=1
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The sensitivity of the voltage stability margin with resptxtthe control variable at

locationi, S, is

oM 8/1 .
= 3.11
ap ap z Kpl li0 ( )

The discussed concept is depicted in Fig. 3.7.

F 3

v

critical powt

- O roray

Fig. 3.7 Transfer margin change with the change of parameter, p [79]

The voltage stability margin and its sensitivity is computed usorginuation power
flow (CPF) method [80], as conventional power flow methods do not giyes@ntion at
the critical point due to singularity of power flow jacobian. In conftilmmamethod, the
system equation at equilibrium state is parameterized bybthircation parametey, which
is the scalar bifurcation parameter that parameterizeso#telével. The system reaches a
state of voltage collapse, wherits its maximum value (the critical point of the system PV
curve as shown in Fig. 3.7), and the value of the bifurcation paraimetqual tok-, which
gives the corresponding maximum loadability and hence the stahildggin M. The
bifurcation parameter sensitivi§ with respect to control paramefeis obtained as a by-

product of the continuation method.
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3.3.1.2Homothetic Stress Directions, Linear Sensitivities and Boundary Identification
The assumption of a stress direction is important to perform CPF study fofyidgrthe

voltage collapse point in that direction. The stress directiopddorming CPF is defined by

a particular combination of base load stress fac;p/si P i=1,2...nloads, as defined in

section 3.2. Figure 3.8 shows the increase of total system logghirtieular stress direction

defined by the combination of three individual loads, L, and Pl.

& — 5

" Base Case

Fig. 3.8 Load increase in a particular stress direction
Such a distribution of stress due to increasing load is known as homaik#&ibution of
load (i.e., load repartition between the nodes same as the baserasesic load factors).
Figure 3.9 depicts this concept in two dimensional space defined ds/Aoand B. The line

LoadhtLoads=C defines various basecases with different inter-node repartitiommg
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loads A and B for the same baseload C. These basecases defius Yamothetic stress

directions in the state space, as shown by the various lines from the origin.

0
o0 o
'L @/
£
= Z
u: \
% ®
k o
e
&
o Load & +Load B =C
C
Toad B —

Fig. 3.9 Homothetic stress direction sampling in the load state space

CPF is performed on these basecases along their intrinsic stresgras shown in the
left hand side of Fig. 3.10. This computes the maximum loadability adwegy stress
direction, which is consequently translated into boundary limitgmi{PP.maxt Of total
system load state space. This limit in the hyperspacligect to variation due to the
influence of discrete variables, i.e., SVC and generator unavdjafiifites. The effect of
these two variables is estimated using margin sensitivitigs respect to real and reactive
power injections along every stress direction, and is given by the equation (3.12),

AP = Qgve. dVSMAQuc (3.12)

where AP "¢

is the change in boundary limit in a particular stress directiontduthe
influence of SVC unavailability, Q. is the amount of SVC reactive power output at the

collapse point along that particular stress direction, and dVSMdQhe linear sensitivity of
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voltage stability margin with respect to reactive power imecat the SVC node computed
as a by-product of CPF study in that particular stress direction.

Finally, the boundary limits in terms of total system load (Mdéntified along every
direction can be translated as a boundary region in the totahrBriload state space

(univariate distribution as shown in right hand side of Fig 3.10.

3 Total Load  Pimin  Pumax

Fig. 3.10 Latin hypercube sampling of stress direction in 3-D and boundary idgaific

The key in realizing the computational benefit that CPF andrls@asitivity offer lies in
the way the homothetic stress directions from the historical data apéesam

3.3.1.3Latin Hypercube Sampling of Stress Directions

Latin Hypercube Sampling (LHS) is very prevalently used in Mod#&lo based
reliability studies in many fields. LHS of multivariate dibtrtion is performed by dividing
every variable forming the multivariate distribution inkoequiprobable intervals, and
sampling once from each interval of the variable. Then these esuauw@ paired randomly to
form k random vectors from the multivariate distribution. Figure 3.11 depi& stratified

sampling in both forms, traditional and LHS, where the differesmae the pairing process.
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In the traditional stratified sampling, samplesiirevery interval of variabli is paired with
every other samples from all intervals of varigj; whereas in the LHS, one sample from
interval of variablel is paired only once with any one of the sample framinterval of
variablej. The pairing in LHS can also be done in such a amyo account for the mutt
correlation of the variables tpreserving their rank correlation [8nd hence capturing tl

dependence structure of the multivariate distribu

A A
a & & @ ® a &
i i
a -_ —_ — a Py
b v L 4 [ J [ ] b [ J
1 1
e e
i @ ® o o i o
@ o o ® o
—> —>
variable i variable i
(@) (t

Fig. 3.11Stratified sampling - (a) traditional, (b) LHS
Similarly, LHS of homothetic stress directions is performeddyiding every stres
factor variable obtained from historical data ik equidistant intervals (i.e., equal width
modification to traditional LHS that partitis into equiprobable intervalssampling once
from each interval of the variable, and pairingnthgreserving their rank correlati to form
k homothetic stress directio
The range of every stress factor variable and their mutoerelation are obtaiid from

the historical dataFigure 3.12 shows a typicastress factor matrix Cobtained using
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historical datawhere each row holds the stress factors of iddaii loadsfor a particular
historical operating conditiorThe matrix D is in the form of a ntulariate distributior
comprised of various vectors of individual loadess factorswhich alsoprovides mutual
correlation.So LHS is employed to samgrandom vectors of correlatedress factorthat

provide us the required stress direct.

d. defined by combination of Pi/> P_ stress factors
G; ¢ermed Oy comDnaion of Y/ » 2, siress 1actors
Historical data Stress factor Matrix D {(Each row - d.)
P__/N1 D /%I — data 1
117 .= 1 217 L~ 1 mi7 £~ i F LT

/I~bD D <~ D T D Aata D

T 12[ L‘l 2 T 22[ L‘ 2 1] m2/ L‘l 2 rd Uualta o
D /<"1 D /<~ D /<"1 D At~ D
Fa3/ 203 o3/ 2.3 M3/ 23 7 Gata >
P./>P, P,,/>P, P../>P] —> data4d
—> datai

—> dataj

Fig. 3.12Stress direction defined in terms of stress fa

Figure 3.13shows (a) traditional stratified sampling and (bJS. of homothetic stres
directions in 3dimensional state space. In the case of LHSk intervals per dimensiol
irrespective of state space size the uniform $cation of stress direction is achieved wk
samples; compared to stratified sampling that predk™ samples fork intervals per
dimension, in a state space of dimensn. The ideal number dis found in an increment
fashion until there is no improvement in the bougdamits. Hence computation ffind the
boundary region can be decreased drastically mgubke proposemethod based cLHS of

stress directions anchiar sensitivitie
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b) Latin hypercube sampling

Fig. 3.13 Sampling homothetic stress directions for boundary identification
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3.3.2Stage Il — Sampling

As explained in chapter 2, the property of importance sampling totteasampling
using an importance functiay(x) towards the area of interdsfx) is used in our method to
generate influential operating conditions from load state sjaggh densityf(x). So given
S the identified boundary region, the importance sampling distribg{onn general can be
constructed as shown in equation (2.7). In the multivariate case, sgrtgahniques such as
copulas or LHS or sequential conditional marginal sampling (SCVIB) 82] is used to

generate correlated multivariate random vectors from non-parardestributions f,(x) and
f,(x). The SCMS method is time consuming and requires a lot of memagg disr storing

the entire historical data, while LHS and copulas are velgtifaster and consume less
memory since they work only with non-parametric marginal dhstions and correlation
data. We use copulas for their simpler and elegant approach inrfggady non-parametric
marginal distributions and inter-dependencies. Sefi#®)75, 75% of the points is expected
from N-dimensional boundary regid®, as the probability distribution is altered to produce
more samples frons Figure 3.14 depicts the probability reorientation by importance
sampling process towards the boundary region in a 2-dimensionalsgiate. Againp
serves as a sliding parameter that controls the extentasingi between a completely

operational study witp=1 to investment planning study wig*0, as observed in chapter 2.
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ig(x)

p-
n

LOAD A

Fig. 3.14Importance sampling scales up boundary region foibty

3.4NUMERICAL RESULTS

3.4.1Study Description
The proposed efficiemultivariate load data processing approach willllostrated ir a
study similar to chapter 2, i.e.,decsion tree based security assessment study forimig
operating rules against voltage stability issuesS&D region Systéme Eléctrique Ou,
West France, Brittany)The following study specifications remain the saas the previol
study in chapter 2:
1. The basecase of SEO network considered correspmn@906/2007 winter witl
13500 MW baseload.
2. The most constraining contingency is the Cordernagbar fault in the Brittany are
that leads to trip nearby group of generation
3. Random sampling to gerate various basecases is performed on the samef
parameters, i.e., the SEO load, SVC unavailakalityg generator group unavailabil

in Brittany area.
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4. The sampling laws for the 5 generation units and 2 SVCs remain the same.

5. The simulation parameters, contingency event time, and criteriabkling scenarios

based on post-contingency performance etc., all remain the same.

The major contribution of this study is the consideration of non-par@meiture of
multivariate distribution of the system load, with its mutualrelation or inter-load
dependency structure preserved, in the efficient Monte Carlo sampling stage.
3.4.2Data Preparation

As presented in chapter 2, the historical load data during the dagtinventer period
(December to February months) between 8hr to 22hr will be usethiforstudy. The
multivariate load distribution is comprised of 640 load buses, out olwthe data for about
20 load buses were missing completely. While there are maxihkefihood estimation
methods such as EM (Expectation Maximization) to iterativelymese missing or
incomplete data, we have used system specific information, i.e.mibging load’s
proportion to other available loads in the basecase, to estimateigbieg load data in the
historical records. The following steps explain the method:

Step 1: The ratios of unknown loads (N to all other known loads (N - Jy in the

basecase are calculated; This is refined by including only tkwswn loads that have

physical relationship with the unknown loads, such as common control egean,ror
any other information that can be obtained from the system experts

Step 2: For a particular historical record, the unknown value of a paatidolad is

estimated with respect to every known load values according tdabecase ratio

obtained in step-1. Then the average of all the estimates islemtbias the estimation of

the unknown load value for that particular historical record. The samepeated for
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every other unknown load values in that historical record.

Step 3:Step 2 is performed for all the missing load values of every historicatisec

The reactive power values of the loads are estimated by maugtdhe power factor
value constant (i.e., basecase power factor). Once the entirechistiata consisting of 640
loads is available, the two-stage efficient sampling procassbe performed to generate
influential operating conditions from the multivariate distribution.
3.4.3Efficient Sampling of Load Parameter

The proposed efficient sampling method is used to generate sarfipla the
multivariate load distribution obtained from projected historical data.

3.4.3.1Stage-I: Fast Boundary Region Identification

Performance Measure and Linear sensitivities:The boundary region identification

process requires sampling homothetic stress directions usingridtd. The continuation
power flow is performed along various stress directions to contpetevoltage stability
margin, and the computed linear sensitivities are used to ésttheastability margin under
the influence of discrete parameter variation. It should be notedthbagh actual criteria
for declaring a scenario as post-contingency acceptable aceptable in the dynamic
simulation was based on bus voltage lower limit and simulation convergéstis, in the
stage of boundary identification stage we propose to use voltagktystalairgin (which is

usually considered as static performance index). Figure 3.15 shewssult of a simulation
study performed to validate the above study specification of wsligge stability margin
criteria to find the boundary region with respect to voltage collapbde in the actual

dynamic simulation the voltage collapse criteria are differgo two simulation studies were
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performed on several operating conditions sampled along the most dikeks direction
used in chapter 2:

1. Dynamic simulation using the ASTRE software

2. \oltage stability margin computation using ASTRE

The left hand side of the Fig. 3.15 shows the relationship betwedwdhagerformance
indices, i.e., whenever the simulation doesn’t converge before thetifimalof 1500s, the
voltage stability margin computed is less than 0; and whenevemtiation does converge

at the final time of 1500s, the voltage stability margin computed is greater than 0.

Final reached time Margin_Stability

1500.004 L B I I I N A O I R N N ) 8004 T

1400.00 6001
1300.00 @0

1200.00 K - -
1100.007 g

[ 0
1000.00 -

-2001

500.00 T T T T : .
400 200 i 200 400 BO0 800 4004, . . .
Margin_Stability 1150000 12000.00 12500.00 13000.00

Margin< 0, Unacceptable? ~ BritanyLoad_PlLoad
Margin> 0, Acceptable?

Fig. 3.15 Woltage stability margin as performance index for fast boundiamification

So the following criterion is used to identify the boundary regiorhétotal Brittany
load state space, i.e.,

IF VSM<0, THEN voltage collaps® Unacceptable post-contingency performance

IF VSM>0, THEN NO voltage collaps® Acceptable post-contingency performance

The right hand side of Fig. 3.15 shows the boundary region identified uSNyt¥ be

between the same total load limits as was identified in ch@pteing dynamic simulation
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convergence criteria, i.e., 11860 MW and 12600 MW. Hence this corroboratelsaice of
using VSM and its linear sensitivities to identify the boundarjorem the multivariate load
state space.

A dynamic simulation study in ASTRE software is performeddentify the voltage
stability margin along a stress direction. This computes tHapsa point with respect to
load increase quickly, as it is a post-contingency process as slyokig.8.16. Unlike the
pre-contingency process (left hand side of Fig. 3.16) of panfg contingency analysis at
every step of system load increase in a particular sthiesstion and then identify the
stability margin at collapse point, post-contingency process of iagpbontingency and
increasing the load until the simulation diverges due to voltagapsalgives the stability

margin faster.

Pre-Contingenc
tingency Posi-Contingency

* J* -~
| ~
Load . - j
Margin N Load
— \" Margin
- ' J*
P
- | T

24 >

Fig. 3.16 ASTRE simulation options for computing voltage stability margin
Then the power flow jacobian &t the collapse point is used to compute the linear
sensitivities of VSM with respect to real and reactive powgctions, by computing the

sensitivity of lowest-voltage bus at the instance of collap$le @spect to power injections
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at all other nodes [83]. Figures 3.17 and 3.18 show the 400 KV and 225KV vatages r
respectively from an ASTRE margin identification simulation ddoaega particular stress
direction on a particular operating condition. The Cordemais bus barwaslapplied at
900s of simulation, and after post-contingency simulation reaches 150Qstahsystem
load is ramped up at a certain %MWY/s along a particular homotkgBss direction
considered (i.e., the intrinsic stress direction of the base operatindition under

consideration) until the simulation diverges.

Voltages on the 400kv Nodes

430

= e : ===
%$ , I “:—a___
410 ?\K:""'Z \ Ty

400

50 —— =

a0

37

- Cordemais bus Time Load increase
bar fault -T=900s From t=1500 to|the end of the simulatior
380
Yi=890= Yi=910= Y i=1490s Y 1=1500= YW i=1510= Y i=1600= W t=1700=

Fig. 3.17 Woltage plots for every 400KV buses
It is noted that the ASTRE simulation diverges at t=1750 s whergeottallapse occurs.
The linear sensitivities are computed within ASTRE at this juectLikewise, for every

sampled stress direction the process of computing voltage stamilitgin and linear
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sensitivities is be repeated in ASTRE. The margin search emsltigity computation in
ASTRE is not as same as the conventional CPF study explaisedtian 3.3.1, which uses
parameterization of system state equations and performs predictdr corrector
functionalities iteratively. The boundary identification can also wopred using any other

software that finds the bifurcation point and linear sensitivities.

Voltages on the 225kV nodes
245 = ——
240
235 1
230
25
220
215
Y

0 Cordemais bus Time Load increase g

bar fault -T=900s From t=1500 to the end of the simulation| %

1
2]5 T T T T T T -
Y t=590s W =910z W t=14905 Yi=1800s W i=1510s W t=1600s W t=1700s

Fig. 3.18 Woltage plots for every 225KV buses

Boundary Identification: There are 24 combinations of discrete parameters (SVC and

generator unavailability) as shown in Table 3.1. For the first cuatibn in Table 3.1, with
no component unavailability, initial basecases are formed based amipiedk homothetic
stress directions. Then CPF is performed to characterize tthestat® space with respect to

post-contingency performance measure and the boundary limiteb8®0 load, {P°%in,
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P393 are found, which is {11627, 12700} MW as shown in Table 3.1. Table 3.2 shows

the process of estimatirigfor LHS in an incremental fashion. Beyokd15, the boundary

region is identified fairly consistently.

Table 3.1 Boundary identification under discrete combinations

S5.No SVC Cases Generator Cases PLSEOm PLSEDM
1 |(MNone MNone 11627 12700
2 |Mone Blayais 11507 12580
2 |Mone Chinon 11474 12547
4 |MNone Civaux 11515 12529
5 |MNone Flamanville 11476 12506
6 |Mone St-Laurent 11450 12562
7 |Plaine-Haute MNone 11618 12691
8 |Plaine-Haute Blayais 11498 12571
9 |Plaine-Haute Chinon 11465 12538
10 |Plaine-Haute Civaux 11506 12520
11 |Plaine-Haute Flamanville 11467 12497
12 |Plaine-Haute St-Laurent 11481 12553
13 (Poteau-Rouge MNone 11608 12681
14 (Poteau-Rouge Blayais 11488 12561
15 (Poteau-Rouge Chinon 11455 12528
16 |Poteau-Rouge Civaux 114396 12510
17 |Poteau-Rouge Flamanville 11457 12487
18 (Poteau-Rouge St-Laurent 11471 12543
19 |Plaine-Haute + Poteau-Rouge None 11599 12672
20 |Plaine-Haute + Poteau-Rouge Blayais 11479 12552
21 |Plaine-Haute + Poteau-Rouge Chinon 11445 12519
22 |Plaine-Haute + Poteau-Rouge Civaux 11487 12501
23 |Plaine-Haute + Poteau-Rouge Flamanville 11448 12478
24 |Plaine-Haute + Poteau-Rouge 5t-Laurent 11462 12534

Boundary 11445 12700

The voltage stability margin sensitivities are computed alongyévstress directions for

the basecases with first component combination of Table 3.1. Theistesiare used to

estimate the change in boundary limits due to the influence of compcoenbination

change. Table 3.1 also shows the estimated boundary limits fothallremaining
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SEO ))

combinations. The final boundary region limits are estimated as 1144@rMMN{R > min

and 12700 MW (max (P nay).

Table 3.2 Incremental estimationlof

k P*5min  P.°*“max  boundary gap
5 12500 12700 200
8 11627 12500 873
12 12000 12700 700
15 11627 12700 1073
20 11627 12650 1023
25 11627 12700 1073

Figure 3.19 shows the boundary characterization in terms of 3&@l load, obtained

from a simulation performed for 24000 random basecases formed by @ddpestorical load

data and all combinations of discrete parameters. This resuliesetine ability of the

proposed method to estimate boundary region approximately at a reglolyed computing

requirements (i.e., only about 20 CPF and linear sensitivity compufatioasmultivariate

parameter state space defined by loads and component unavailability states.

[]4cceptable

[]UMacceptable

—_——

—— T T T T T T T T T— T— T— — T— — —

Fig. 3.19 Boundary characterization in total SEO load state space
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3.4.3.2Stage-II: Importance Sampling

Many MCS studies in the past have assumed a multivariate ndistidbution of load
data [7]. But in our study, we perform importance sampling on aaomdirical non-
parametric distribution obtained from the projected historical datkafs. Figure 3.20
shows three marginal load distributions among the 640 load vectors k& up the
multivariate historical data. It is seen that the multivarntaséribution is made up of marginal
distributions that are not exactly normal, but by visual inspection some looksalosertal,
some uniform, some discrete and so on. So a multivariate Norraaftymption may give

misleading results.
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.20 Some sample marginal distributions from historical load data
Furthermore, these marginal distributions are not independent to rhedelseparately
as a group of normal, uniform and discrete distributions respectindlgample; but they are
mutually correlated, and the sampling method must preserve iterrdependencies or
correlations while sampling. The whole sampling task becomes meea challenging,
considering the non-parametric nature of the marginal distribufidresefore, as mentioned
in section 3.3.2, copulas are used that could efficiently work withipteulhon-parametric

marginal distributions and their mutual correlation (rank coieiatto produce correlated
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multivariate random vectors from original multivariate distributmbefined by empirical
historical data.

After identifying the boundary region limits, the empirical nudtiate distribution of
boundary regiorf;(x) is begotten from historical data by filtering the recordshiwitthe
identified boundary limits. When p 1 in equation (2.7), we have complete sampling bias
towards the boundary regidi(x). The inter-dependencies between various individual loads
are captured in the sampling process by using copulas, antatdrenultivariate random
vectors fromfy(x) are generated. The generated samples are for real power malyeand
the reactive power at the corresponding individual load buses are obtained ammajrihe
power factor constant. Figure 3.21 shows the operating conditions sampézchs of real
and reactive load power values from the multivariate boundary regioadh is fed as input

to ASSESS in the form of a text file.
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Fig. 3.21 Brittany load samples generated from boundary region importancerfiug)
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3.4.4Results

3.4.4.1Best Rule Attribute

The training database was generated from the boundary regiomecan2852 operating
conditions. The test database includes 1976 independent instances, 824 uniaceepta
1152 acceptable cases, covering a wide range of operating conditisesn by training
database. Attribute set “400 KV” contains 46 400KV node voltages, “225cKhtains 102
225KV node voltages, “P res” contains 10 generator group’s and total SE@oxear
reserve, “Q flow” contains various attributes such as 12 400K\ingereactive flows from
SEO region to other regions, 4 inter-area 400KV reactive transfiedsnet reactive power
export; and “Q res” contains 10 generator group’s and total SEdew SVCs) reactive
reserve. Table 3.3 shows the effectiveness of various attridstenderms of classification
accuracy and error rates.

Table 3.3 Attribute set selection

Attribute Set Accuracy False Risk Tree size
alarm
400 KV + Q res 87.9079 0.193 0.073 15
Qres 87.7159 0.183 0.083 15
225 KV 82.8215 0.243 0.124 15
400 KV + 225 KV 82.7255 0.253 0.12 15
400 KV +225 KV + Q res 82.6296 0.236 0.132 13
All 82.6296 0.236 0.132 13
225KV + Qres 82.4376 0.231 0.139 13
400 KV 80.8061 0.231 0.166 17
Q flow 75.5278 0.325 0.191 23
P res 73.8004 0.402 0.169 13

Accuracy is defined as the percentage of points correctygitiled, false alarm rate is

defined as the ratio of total misclassified unacceptable iressaamong all unacceptable

www.manaraa.com



73

classifications, and risk rate is defined as the ratio of totstlassified acceptable instances
among all acceptable classifications. The attribute set “408KYres” proves to be a good
attribute with lowest risk and high classification accuracy. It has to bd tiethe accuracy
listed in the Table 3.3 are for trees that are pruned byctesgrthe minimum number of
instances per leaf node. On top of this, other dimensionality redwstbattribute selection
methods such as principle component analysis, filters and wrappdisSktwhich are very
prevalently used in many studies may be employed.

3.4.4.2Effect of Bias Factor p

Computation, Accuracy and Tree Siz€able 3.4 shows the results when validated using

the test database, which confirms that as the sampling of oge@nditions is biased
towards the boundary region, the entropy of the database increapem(gative indicator
of information content) and even with lesser database size higher acaurdegision tree is
obtained, also shown in Fig. 3.22. The error rates, nafatdg alarmsandrisks are both

simultaneously reduced to a great degree.

Table 3.4 Performance based on sampling bias

P Size Entropy Accuracy False Alarm  Risk
Base 17748 0.7423 92.51 0.063 0.091
0.25 13840 0.7716 93.4211 0.064 0.068
0.50 9932 0.8181 94.9899 0.049 0.051
0.75 6025 0.9038 96.0526 0.038 0.041
1.0 2852 0.9993 97.5202 0.021 0.03

It was also found that as the sampling is biased more towardmtimelary region, the

size of the decision tree required for good classification alsceases. This is due to the
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ability of database to capture high information content (i.e., thahibty of performance

measure across the security boundary) even with smaller number of isstance
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Fig. 3.22 Information content vs. accuracy and computation

Economically beneficial rulesTable 3.5 presents the influence of efficient sampling on

the operational rule’s ability to provide economic benefit.

Table 3.5 Economic benefit from efficient sampling

Top Node p=0 p=1
Cordemais voltage 401.64 KV 399.88 KV
Domloup voltage 397.56 KV 394.51 KV
Louisfert voltage 399.1 KV 396.46 KV
Plaine-Haute voltage 392.26 KV 387.21 KV
Chevire unit reactive reserve 131.38 MVar 90.76 MVar
Chinon unit reactive reserve 1127.54 MVar 694.62 Mvar
Cordemais unit reactive reserve 70.97 MVar 16.23 Mvar
Total SEO region reactive reserve 7395.88 MVar 6510.36 Mvar
Plaine-Haute SVC output 11.82 MVar 13.64 MVar
Poteau-Rouge SVC output 16.3 MVar 22.03 MVar
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The Table 3.5 shows that for the various possibilities of the decis@efs ttop node
among the most influential attributes, the database generateich Wwdundary region with
p=1 finds rules with attribute thresholds that are always lesseceatdve than from the
database generated wigO0, i.e., from entire operational state space. Figure 3.23 shows
operational rule formed using two attributes, namely reactivevesat Chevire unit and

Chinon unit respectively.
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Fig. 3.23 Economical benefit of operational rules from efficient sampling

www.manharaa.com




76

The operating conditions shown in the Fig. 3.23 are from the entireadatalb can be
noticed that the rules formed using the database exclusivelythhenboundary region is
providing more operating conditions to be exploited in real time ®mtgtthan the rule
derived using the database from entire region; because of theasedr knowledge and
clarity of boundary limits.

3.4.4.3Sampling Strategies Comparison

Table 3.6 shows the comparison results of different sampling approaches, namely,

1. Uniform sampling of boundary region in the load state space definad #le most
likely stress direction.

2. Importance sampling of boundary region in the load state spacediéfirthe most
likely stress direction.

3. Importance sampling of boundary region in the multivariate normal (MMsgl
distribution (pruned).

4. Importance sampling of boundary region in the correlated non-parametiivariate
load distribution (MVD) (tree pruned).

5. Same as case 4, with tree un-pruned.

Table 3.6 Comparison between different sampling strategies

Sampling Strategy Size Accuracy False Risk
Alarm

1. Unif (single stress) 952 56.0729 0.684 0.097

2. IS (single stress) 800 63.5628 0.595 0.041

3. IS (MVN - pruned) 2879 80.6142 0.142 0.228

4. IS (MVD - pruned) 2852 87.0951 0.094 0.178

5. IS (MVD) 2852 97.5202 0.021 0.03
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It can be seen from Table 3.6 that, importance sampling procestareassuming a load
state space along a single stress direction, has betternpanice in terms of high accuracy
and low error rates than uniform sampling within boundary. The dsgapeoduced by
importance sampling of correlated-MVD state space definglebyvs better performance, of
course with a higher computational cost since sampling includey stegss directions.
When the trees are pruned for operator’'s convenience of usage thacgaecreases, which
can be improved using the accuracy-loop as shown in Fig. 2.2olpatforms better than
sampling from MVN load space, which is conventional assumption in many studies.

The significance of sampling from correlated-MVD, i.e., captyrithe inter-load
dependencies, than from MVN is even strongly vindicated by Fig.tBé&4shows the top 5
critical attribute locations produced by decision trees fronpees/e databases. The
contingency event is shown by a red star. The location ottibBatrmonitoring attributes as
well as their sequence in the tree matters. Compared to MVN, all the 5 toprisdaund by
correlated-MVD sampling strategy are very interesting onih,the top node being reactive
reserve at a big nuclear plant Chinon, the node in the next levie dfete is closer to the
contingency location, the next nodes (3 and 4) in the tree dehlsh@itwo SVC locations in

Brittany and the attribute of node 5 is right at the contingency location.
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Fig. 3.24 Critical monitoring locations from decision tree: MVD vs. MVN

3.5CONCLUSIONS

The thrust of the proposed sampling procedure is to re-orient the samppicgss to
focus more heavily on points for which post-contingency performascelose to the
threshold, i.e., boundary region that contains operating conditions infludotialule
formation. The chapter emphasizes the significance of samplomg fion-parametric
correlated-multivariate load distribution obtained from historicata,davhich ensures
selection of attributes from most interesting and relevant totatby decision tree as
monitoring locations. A Latin hypercube sampling of homothetisstderection based linear

sensitivity method is developed for quickly characterizing the waultite load state space
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for various combinations of component availabilities, and identify the boymelgion with
respect to post-contingency performance measure. The devel@ipeshtetraining database
approach was applied for deriving operational rules in a decisiohasssl voltage stability
assessment study on RTE-France’s power grid. The results shbthhéhgenerated training
database enhances rules’ accuracy at lesser computation edntpanother traditional
sampling approaches, when validated on an independent test set.

The developed database generation method will also improve ttoenpence of other
machine learning classification tools such as SVM,d&. The efficient database generation
approach can also be applied to other stability problems such asamgterstability, out of
step etc, where performance measure’s trajectory sensgiwiil have to be used to reduce
computational cost.

This work will have significant benefit to companies owning, opegator using high
voltage transmission systems because it will significantly recehdhe speed with which
operational planning and investment planning studies are conducted. Canpatri@miliar
with this statistical approach to performing such studies will ifkerested in the

demonstration to gauge its applicability to their own needs.
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CHAPTER 4 DECISION TREE BASED SECURITY ASSESSMENT

FOR MULTIPLE CONTINGENCIES

4.1INTRODUCTION

In power system reliability assessment studies the sysssurity limits and adequacy
indices depend on the set of contingencies analyzed. Consequently tiselfitian strategy
for short term operational and long term investment planning studsgsectively also
depend on the set of contingencies considered in the planning studyplersttaand 3, the
decision tree based security assessment was performed foosheonstraining contingency
in Brittany region, which is typically done in many studies. Hssumption is that the
solution strategy or in our case the operational rules for the raostraining contingency
will also perform well on the contingencies that have loweess. But this is generally not
true. In reality, under the highly uncertain nature of power systarditions, the operational
rules for the most constraining contingency may not be effeativallf other contingencies.
Some contingencies, which are generally less severe, may leaipced ill-effect during
certain operating conditions.

For instance, in Fig. 4.1 let us consider an operating condition state dgined by two
loadsPloadlandPload2 Let the two curves (green and orange curves) on the state sp
indicate the security boundary limits separating the acceptaid unacceptable operating
conditions with respect to post-contingency system performance for continge(CiEsahd
2 (C2) respectively. So inducing an operational rule for C1, which ie s@rere than C2,
will classify the operating conditioR as safe under both the contingencies, while it may not

be so. Since the proposed efficient database generation approdwpiar@ is based on
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sampling operating conditions from the boundary region defined by postgency
performance, now the boundary region has to be defined with respect tglanul
contingencies. This will ensure sampling the required high infeomabntent training data
for decision tree rule formation applicable to multiple contingemcTherefore, it is
important to perform thorough contingency analysis of many comamgg screen the most
important ones that may violate reliability criteria and dewfective solution strategies

[84].

Ploadl -
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Q o o o/ ®
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Q Q o) ® - | Contingency 2
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Q Pd + High Probability
O ! .-.-H\
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Contingency 1
High Impact + Low
How safe is this Probability
operating condition?

Fig. 4.1 Significance of considering multiple contingencies
So, this chapter focuses on devising efficient methodologies to pedecmion tree
based security assessment against voltage stability phenomenomalwy critical
contingencies and obtain operational rules for every contingenciesi@@ts The two main
concepts proposed in this chapter for a comprehensive multiple-congngecarity

assessment arssk based contingency rankingndcontingency grouping
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4.2 MOTIVATION AND PROPOSAL

4.2.1Risk Based Contingency Ranking

In order to reduce the computational burden of contingency analysis, contimgakirg
methods are typically used in power system reliability assest studies. They help in
screening the most critical set of contingencies that ateetthoroughly analyzed. Many
deterministic ranking methods have been developed for reliabisgsasent that considers
the severity of contingencies only [58, 59, 85]. While some studies chiv®@saost severe
contingency, many screen a credible list of contingencies &mnpig under a wide range of
scenarios. But, under the current highly probabilistic nature of psygem, a contingency
ranking method which does not consider the probability of each contingendy lead to
inconsistent or less effective or even expensive operational solgtratsgies. As shown in
Fig. 4.1, the C2 even though has a moderate impact or severity em getformance still is
highly probable than C1, so it is important give attention to CRarmptanning study. At the
same time, there could be some other contingency which has aeverg smpact on system
performance, but is highly unlikely to occur. In that case such contiege may be
discounted in the overall planning process, or could be considered asspeai@ case
independent of overall planning process. Otherwise that one contingéidy is/very rare,
if considered with all other contingencies in the planning process give forth to very
expensive solution strategy in normal operating situations. So oyms® to developisk
based contingency ranking procekat would eventually help in screening top contingencies
that may lead to voltage collapse.

The risk of a contingency over a wide variety of operating conditions is defined as,

ContingencyRisk= Contingency Occurrenc@robability X ContingencySeverity 4.1)
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All the risk based contingency ranking process proposed in openturerhas the
common idea of performing contingency simulations over a wideerafgoperating
conditions, and compute a severity function based upon the post-contingency eespons
database. Then according to the formula shown in equation (4.1liskhe# the contingency
is estimated. The same procedure is followed for every other camtingethe selected list,
and finally ranked. But the methods developed so far have not consithereactual
probabilistic multivariate distribution of the operating conditions, whey also be non-
parametric, during the stage of Monte Carlo sampling processsflidies so far have also
not considered the huge computational cost incurred in estimatingskhposed by each
contingency over many operating conditions. So in this chapter wegeoa risk-based
contingency ranking method that estimates contingency risk fay roantingencies over a
wide range of operating conditions sampled from multivariategtmdity distribution. The
proposed method is efficient compared to existing methods in the iofjpwe., it has the
ability to get realistic risk indices for multiple contingenciesaatvery highly reduced
computational cost The risk indices are realistic because we consider the nafure
probability distribution of operating parameters, i.e., if the opergiamgmeter distribution is
multivariate normal or it is non-parametric, and efficient methavésdeveloped to address
both the situations, which has been missing in all the other workheAgame time, even
after accounting for the multivariate nature of operating condidistribution, the risk
estimation process is faster as the computation of risk astimis performed using linear

sensitivity information.
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4.2.2Contingency Grouping

Once the critical contingencies have been screened usingsthdased contingency
ranking scheme, every screened contingency has to be considered &iwoopkplanning.
Usually, a separate operational rule for every contingency ghedest performance in
terms of decision rule’s accuracy [60]. So in our study, as shawrg. 2.2 we could
generate high information content database for every scremmdohgency, and produce
operational rules using decision trees, i.e., in other words, a sega@sion tree for every
contingency. But this is generally not preferred as it burdensygtem operators, who will
be dealing with too many rules.

So a global decision tree for many contingencies can be cdestrie could achieve
this by sampling operating conditions from the boundary regions of eeatingency. But
the global tree can never outperform on its ability to clasalfythe post-contingency
situations (i.e., a wider boundary region), when compared to the drggparate tree for
every contingency. Moreover, there is also the danger of redd@ngperating rule’s ability
to perform well under the most constraining and likely contingewbgn we group all the
contingencies together. So generally such global trees reggmge of decision tree post-
processing methods [29] or meta-learning methods such as baggintindpostacking of
many learning methods (i.e., divide the boundary region and conquer) [1&] ebprove its
accuracy over the entire domain of boundary region. The problem with #heshat they
usually overfit the decision tree to the particular operating conditmas contingencies
under consideration, and makes the tree very less effectivagsifging rare instances. In
addition to that, the meta-models do use multiple-trees and voting eshenglassify, and

thus it makes the decision process complex for the operators to interpret and apply.
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So we propose a contingency grouping method that would strike a dababhween
producing simple and accurate trees for contingencies, as wedtdasing the number of
trees for multiple contingencies. The idea of grouping componenid bas specific
performance criteria is already prevalent in power systenit, li@duces computational cost
for system reliability studies and also provides valuable guidandecision making. For
instance, generators are grouped based on their slow-coherency pec®mwlach gives
valuable information in controlling islanding to prevent blackout [86]ndBators are
grouped based on angle gap criteria for fast contingen®ersiag [87]. Unsupervised
learning methods are used to group contingencies based on thdioaftaes voltages [88].
Then Neural Networks are used to predict post-contingency bus voltegkes many
contingencies just by using few representative contingencigsptheeducing computation.
Such grouping concepts are also used for designing defense system as UFLS schemes
[89]. So in this chapter, we propose to group contingencies based odeghnee of
overlapping among post-contingency performances of contingencies oderrange of
operating conditions. We introduce a graphical index, termepra@gessive entropyhat
captures this degree of overlap visually. Tgregressive Entropy curveare plotted for
various contingencies over the distribution of operating conditions along any sisiabie.
The final decision on the potential grouping indicategtngressive entropgurves will be
based on the particular group’s common decision tree’s classifigarormance for all the

contingencies in that particular group.
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4.3 TECHNICAL APPROACH

4.3.1Risk Based Contingency Ranking
4.3.1.1Voltage Collapse Risk of a Contingency
A simple expression for computing risk of a contingency over maolygble operating

conditions is shown in equation (4.2).

Risk(C )= P(G )Y, P(X IC ¥ Sev(X |C (4.2)

where,

e P(C) is the probability of the'" contingencyC;. Assuming that this probability is
determined only by the failure rate of the component that calngesdntingency, it
will be the same for all operating conditions.

o X is the | possible operating condition, arf(X|C;) is the probability of the
operating condition given the contingency.

e Sev(X|Ci) quantifies the severity of th& possible operating condition in terms of
some stability criteria, when subjected'facontingency.

o ZP(X|Ci) Sev(X|Ci) quantifies the severity of a contingency computed using its
influence over all the sampled operating conditiofis,

Typically, Poisson distribution is used to describe the occurrefcan event in a

particular time interval. So given an occurrence patgf a contingency in a certain time

interval, the probability of that contingency happening at least once in that teneains
PC)=3 P(x)=1- P(x= 0)= 1 &* (4.3)
x=1

where,
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e ) is the mean number of events during a given unit of time

e Xis the number of occurrence

The termP(X|Ci) in equation (4.2) can be substituted by the probability of performance
index subject to a contingendy(P1|C) [7]. So for a voltage instability problem, probability
distributions of performance indices such as maximum loadaljfifi|Ci)) or voltage
stability margin(P(M|Ci)) can be used. Voltage stability margi) is defined as,

M =L, — System base los (4.4)

So, for voltage instability problem equation (4.2) becomes,

Risk(C )= P(G)Y. PH, IC ¥ SeW, C| (4.5)

The severity function for an operating condition in equation (4.5) is defined dretdior
continuous function. Typically, if post-contingency margin is non-positiveaf@articular
operating condition, then a voltage collapse will occur. So irrespeat the magnitude of
non-positive stability margin, we assume that the consequence ofjevaitdlapse is very
severe and generally unacceptable under any condition. So the sdwurdtipn of an
operating condition for voltage collapse is defined as discrete functiquatien (4.6).

Lif M, <0

SeviM [G )= {o if M >0

(4.6)

Since the discrete severity function is like an indicator fonctor collapsel(M<0), the
severity function for a particular contingency becomes a pratyateérm, which we refer to
as the probability of collapse subject to continge@cyt is expressed as,

SP(M,IG )x Sevil, IC)FY. R, [C3 M, < OIC

—P(M<0|C)v X, 's

4.7)
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Therefore, for the given discrete severity function, risk in equation (4r&vigten as,

Risk(G )= P(G )*PM < O; (4.8)

So, to estimate risk of a contingency over a wide variety of tipgreonditions, we must
estimate probability of collapse, i.?(M<0) in equation (4.8). This is the bottleneck in
contingency risk estimation (CRE) methods. Typically it is dopedntingency simulations
over various operating conditions produced by Monte Carlo samplingtlas case of work
[90] that samples many operating conditions in the multivapatameter space defined by
border transactions and system loading conditions. But this is W ¢onsuming,
especially if it is to be repeated for several contingerforesanking purposes. Wan et. al [7]
in their effort to estimate risk of an operating condition withpees to voltage collapse
proposed utilizing linear sensitivity measures to estimate th#orpeance measure
(maximum system loadability), which could drastically reducectimaputational burden for
estimating probability of collapse term. But it assumes the ngadonditions to follow a
multivariate normal distribution, which is usually not the case alitye Furthermore, it
computes linear sensitivities for only one stress direction, viileality the multivariate
loading distribution will have many stress directions.

In this chapter, we propose a CRE method that considers varregs slirections in
multivariate load distribution, while utilizing the ability of séngty measures to reduce the
computational burden. The LHS method presented in chapter 3 is used te sanmis
homothetic stress directions in the multivariate load paranteter space. We also propose a
machine-learning based CRE method in order to account for the irdl@émon-parametric

nature of multivariate load distribution on risk estimates.
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4.3.1.2CRE I: Multivariate Normal Operating Conditions
Let us consider the uncertainty in operating conditions is repezsbgtsystem loading
conditions. The probabilistic nature of system loading conditions is expresseusmofereal
power of individual loadsy, that forms a ‘n’ dimensional operational parameter state space
X following a multivariate normal distribution as shown by equation (4.9).
X = [X1... %) "~ MVN (i, ,02) (4.9)

T

where 1, is the mean vector Y, X,, X,...x, ] ' representing the mean operating

condition, and O, is the variance-covariance matrix obtained from historicah.dat

Performing a continuation study on mean operating condition along @utertistress

direction in order to assess the voltage stability under a triticdingency, the maximum
loadability, 4,,, and the margin sensitivitié§ with respect to real and reactive power

injections at the critical point can be obtained. Using the mamgnsitvities maximum
loadability for many other operating conditions defined by individuad hariation can be
computed as,

L= gt + SP . (P-p2,) (4.10)
where P is the parameter vector, which in our case is individual reakp@nd reactive
power load at every nodes for various scenarios, given by;

P=[X X*q" (4.11)
wherergp is a diagonal matrix witlQ/P ratio at every load node, and*rq, is the reactive
power load at every node with a constant power factor. Theréldmlows a multivariate

normal distribution, i.e,
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2
P~MVN (u,,0;) (4.12)
where, 4 is the mean parameter vector associated with the mean opegatidgion for
which sensitivity information has been found out, aff,dis the variance-covariance matrix

associated with the parameter matrix. In general we carhals® other parameters such as
generation dispatch, line reactance, shunt susceptance etc.
Since equation (4.10) is a linear transformation of multivariate foandom variable, it
can be proved thaim also follows a normal distribution [91].
Lm~N (4, S} - 02.S)) (4.13)

Voltage stability margin can be defined as,

M=Lm-3x (4.14)
i=1

where )" x is the total system loa¥rora. Therefore,
i=1

M= g+ SPT(P-u,)- D% (4.15)
i=1

n
Given X~MVN > x also follows a normal distribution, i.e., sum of normal marginals
i=1

(Central Limit Theorem).

Xrotal = D % ~N (. Xi 0 5a) (4.16)
i=1 i=1

no_
where )" x; is the sum of mean of each load component (marginal distributiof) &f,,,,
i=1

is the variance 0Krqa. NOW, Voltage stability margiM, i.e., performance measuye also

follows a normal distribution.
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M =~ Y()~ N ((uLm-i% 1(SPT. 02 S) +02) (4.17)

So the probability distribution of performance measure from probaliltribution of
operational parameters can be directly obtained,Paf[<0) can be computed. Figure 4.2
illustrates the risk calculation procedure for several contingenavhen we have the
operating conditions following a MVN distribution.

It is to be noted that the estimationlgfusing sensitivities in (4.10) will be reliable only
for the operating conditions along the particular stress dirediomder consideration. So as
shown in Fig. 4.2 many stress directions are sampled and thebpitgbaf collapse is
evaluated for every single stress direction for a parti@datingencypP(collapse|Gd). The
final probability of collapse for a contingency is computed as,

P(collapse|® = Y.P(d)*P(collapse|G,d) (4.18)

The degree of variation among all the terms in the above summatomuted and the
variance is checked to see if a particular contingency pmdegh risk along a particular
stress direction, even though the overall risk considering alsdhgpled stress directions
may be low according to equation 4.18. Consequently a separate plantiatiyencould be
implemented for that particular contingency along that particulaissiiresction.

The probability of sampled stress directions are computed kdNearest Neighbour
(KNN) classification method, an instance based machine learnisgjfdation method [18,
92, 93]. The following steps are followed:

1. The training data is composed of sampled stress directions, veélaefre stress

direction is considered as a separate class (centroid of sjuatet the stress factor

components are the attributes
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Select contingency,;C

Sample Stress directions, dising
historical load distribution

Perform CPF for y to get the expected
value of the loadabilityt{

Compute stability margin sensitivitie$

Assuming MVN, compute pdf for margins

P(Mk |Ci.dy)

0
P(Collapsd C.,d, ) = J'P(Mk IC..d,)dM,

T—> CheckVariance
A 4

P(Collapse|C,) = Z P(d,)* P(Collapse|C, ,d,)
k

Next C

£ )

Next d |

K >
Sy

\ 4

\ 4

<

v

Compute and store risk

Fig. 4.2 Risk based contingency ranking with MVN assumption

2. The testing data is the stress factor matrix D from historical data
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3. ThekNN classification technique is employed on the training datalsasd the class
predictions for the test database is obtained. In other words, eact redistorical
stress facor matrix D is mapped onto a particular sampledosveicistress factor
usingkNN

4. Step 3 provides proporion of records in matrix D grouped to each ceanfrsidp 1,
and hence the proability of each sampled stress direction is estimated.

Finally, according to equation (4.8), the product of probability of comicygeand
severity of contingency (probability of collapse) will give ik of contingency. This is
repeated for every selected contingency, their risks are computed and éyeankald.

4.3.1.3CRE II: Machine-Learning based Risk Estimation

In section 4.3.1.2, the linear analytical relationship between thetmmaigparameterX
and the post-contingency system performavigenaximum loadability) by virtue of using
linear sensitivities as shown in equation (4.10), directly gave foetipriobability distribution
of post-contingency performance measure for a particular dtiesstion [7]. This was
possible since the operational parameter followed a multivariateahdistribution, which is
amenable to linear transformation.

For operational parameter with non-normal or any non-standardbdigtn, which is
usually the case in reality, it is not possible to directhyawbthe probability distribution of
post contingency performance measure. Therefore Monte Carlo sonuwéthe operational
parameter spack has to be performed to produce many operating conditions, and then the
maximum loadability in each case is computed using equation (4&i3).would give the
required probability of maximum loadability, which consequently gives grobability of

performance measure, i.e., the voltage stability mavgin
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It is to be noted here that all the operating conditions sampled maittivariate
distribution will not fall in the same stress direction. Hencetgetising equation (4.10) to
estimate the post-contingency performance, we need to computendae 8Bensitivity
corresponding to the stress direction of particular operating comdithder consideration.
We can neither afford to compute the linear sensitivitiesesponding to the stress
directions of all the sampled operating conditions, for it is antidissertatite very purpose
of reducing computation by using linear sensitivities to esarparformance measure. But
the fact that operating conditions can be grouped into many rdlustieed on their proximity
of stress directions, can be exploited here to reduce the coropwati make effective use
of linear sensitivities to estimate voltage stability mardihis is achieved through machine
learning techniques.

Figure 4.3 presents the machine learning based risk index estimadthod where linear
sensitivities computed for few operating conditions are used toastthe post-contingency
performance measure under many other randomly sampled operatingoosndi particular
computed sensitivity is associated with a particular new tipgraonditions based on their
intrinsic stress factor vector usindNN classification. So the first task is to sample k
representative stress directions from the historical datxgaimed in section 3.3.1.3, for
which the maximum loadability and sensitivities are computed bedace Then when
several operating conditions are sampled, each one is mapped tizagrastress direction
among initially sampled k directions usingNN classification method. Hence the
corresponding sensitivity and loadability values are used in iequ@.10) and the post-
contingency performance measure is estimated for that ydartioperating condition.

Likewise, every operating condition is grouped to a particularsstrirection, and
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accordingly its postontingency voltage stability argin is estimated using equation (4.
The probability of collapse in equatio4.8) is computed using the estimated volt.

stability margins for all the 1000 sampled opemtonditions, as shown lequation (4.19).

Pr(M < 0)= Risk of collapse- #M, <0) _ (4.19)
#operating conditions
Sample &"stress directions d,from matrix D |
I
Perform CPF
e
1 2 l 3 l k l
v - - o o
Maximum haximum
Leadability. Loadability.
pl., o o o o o wl,
Sensitivity 5 | | Sensitivity 5,
Sample 1000 operating conditions from
correlated multiva oad data
| AN
Oparating conditions
LPenaPear.oooviieinvennn. P 1=1dy
2PaaPeiiiiiiien. Pma—
PPasPer.coiiiiiiennn. Pz da
LOO0. e P 1000~ diy000

www.manharaa.com




96

Hence the risk of contingency is estimated. The same is dooéhfarcontingencies too,
and eventually a risk-based contingency ranking is performed.
4.3.2Contingency Grouping

This section explains the proposed progressive entropy based confingeuping
concept. This is developed to derive a smaller set of rules witth gerformance for all the
screened contingencies. The concept of entropy was discussediarchawhere entropy
provides a quantitative measure of information content in a datahase,thie non-
homogeneity level in the class attribute (performance measlithe database. Here, we
introduce a new concept, namely progressive entropy, for visualtzengatriability in class
attribute along any power system variable, such as systehidwal, reactive reserve in an
area, line flows, generator group reactive reserve etc.

4.3.2.1Progressive Entropy

Progressive entropis computed as follows:

Step 1 Sample many operating conditions from the multivariate load distribution

Step 2 Perform simulation and ascertain the post-contingency performance measure

Step 3 Stack the performance measure variability along a systerable distribution.
Figure 4.4 shows the boundary progression in the total load variable.

Step 4 Compute the database entropy for every progressive dat§baseshown in
equation (4.20), and plot the progressive entropy along any importanbleaégure 4.4
shows the progressive entropy curve for a contingency in the system |caulezari

ProgressiveEntropy= Entropy(S,), j = 12K N

=3 - p log, p #.20)
i=1
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where,

e §is the progressive database, made up of operating congigdiaken one at a time
in the direction of going towards unacceptable conditions. So variablesasuotal
Brittany load the unacceptable operating conditions proliferaasdanding direction,
and for variables such as reactive reserve the unacceptable rgparatiditions
proliferate in descending direction.

e N is the total number of operating conditions and consequently thentotdder of
progressive databases,

e ¢ is the number of classes in the datat&sand

e piis the proportion 0§ classified as class

/Entropy [[] Acceptable
B Unacceptable

Brittany Total Load (MW)

Fig. 4.4 Boundary progression and progressive entropy in total load variable
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Again in this case, computational cost can be tremendously savadimhg linear
sensitivities of performance measure with respect to samplargmeters, i.e., loading
conditions, as described in section 3.3.1.1. In this way, we can skipefh€ snentioned
above to compute progressive entropy.

4.3.2.2Contingency Grouping Recommendations

Figure 4.5 shows the typical progressive entropy curves forfereht contingencies C

(highest risk), @ C; and G; based on which recommendations for contingency grouping

will be made.
A
Entropy
Group 1
A
Group 2 «-._ Y Lo
S~ o e C,
Mismatch in progressive '
influence of contingencies ~~._. W, 7
w2 G
.,-"":C4
® >

Brittany Total Load (MW)

Fig. 4.5 Contingency grouping recommendations based on progressive entropy
The following are some factors that help us in making the decision:
1. The degree of closeness among curves, i.e. whether intertwinedosely

enveloping?
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2. Visualization of progressive influence of contingencies over operating morslit

For instance, in Fig. 4.5 the progressive entropy curves;fan@ G along load variable
intertwine, indicating they have similar influence on the opegatonditions in all the load
ranges. So they can be grouped together as Groupl to geneatemarc operating rule,
which is advantageous for the operators. There are two optionseheraging a training
database for a common rule:

1. High Risk: The training database is generated by sampling the operatingiaosdit
from the boundary region of the contingency that has highest risk amemgouped
ones having similar severity. This is to ensure that the rulerpesfexclusively well
for the high risk contingency.

2. Proportional Risk: The training database is generated by sampling operating
conditions from each contingency’s boundary region proportional tosksimdex.
This is done to bias the training database according to théhbkeliof contingencies
among the group of contingencies that have similar severity.

Also in Fig. 4.5, Groupl contingencies envelopea@d G. Similarly G envelopes ¢
But they are not as close as é@nd G, implying that the progressive influence of the
contingencies in Groupl over the operating conditions is more séaréhie contingencies
Cs and G. So if it is not too close, then a common rule may poorly perfdima reduction in
performance may manifest in different ways depending upon the abfdiening database.
For instance, a common rule derived from the training databaseatghbased on the “high
risk” criteria will degrade the performance for other cogeimcies in the following way. The
rule will generate a lot of false alarms for less seva@mtingencies or more risks for more

severe contingencies. For instance, the rule fom@y produce a lot of false alarms when
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applied to G and G. If the common rule is generated based on the criteria of “propalt
risk”, then there is a great chance of degrading the rule pwafare for high risk
contingency, as the rule has to cater to a wide spread boundary region.

Nevertheless, in the case of less severe contingengiend_G, inspite of the above
mentioned possible degradations in rule performance, they can sgitbbped together as
Group2. In this case, the reduction in rule performance generalgrydess, since they fall
in the lower severity band with smaller boundary regions.

So for each group recommendation, two training databases are gdneeat as per high
risk and proportional risk criteria. The final common rule iseseld based on its
performance over all the contingencies in the group. Therefore, tpegae contingency
grouping concept promises:

1. Reduction in operating rules. For the hypothetical case considefad.id.5, rules

reduced from five to two for a total of five contingencies.

2. Computation reduction for generating training databases. This ssbf@since the
group recommendations are made prior to the stage of training dagg@sation by
using linear sensitivities to obtain progressive entropy curves. reduce the
computational cost involved in generating training database for dedrgie training.
In the hypothetical case discussed above in Fig. 4.5, four datadrasesquired to
derive common rules, instead of five for individual contingencies.

3. Improvement in rule performance by producing a separate commoforwgferent
groups, which is better than overfitting a global common rule dbr the

contingencies.
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4.4 NUMERICAL RESULTS

4.4.1Risk Based Contingency Ranking

4.4.1.1Study Description

The proposed risk based contingency ranking approach is applied faagevstability
study performed on SEO regio8y(steme Eléctrique Ouge®Vest France, Brittany) of French
EHV system. Figure 4.6 shows a map of critical contingencytiotain French network
that are selected in consultation with RTE engineers. Thesengemties are usually
considered to have severe influence on voltage stability of i8@ork during winter. The
objective is to rank the considered contingencies in decreasingadbridheir voltage collapse
risk. Eventually the top contingencies are screened, and decision delieed as per
methods proposed in chapter 3.

The details of each contingency in the locations shown in Fig. 4f@resented in Table
4.1. The Chinon node, which is not shown in the French network of Fig. 4.6, isheear
Avoine node. At Flamanville node, there are two critical units thedefore three different
contingencies, i.e., unit 1 outage, unit 2 outage and outage of both ttheammiinvestigated
as shown in Table 4.1. Out of seven contingencies considered for tlye thinge critical
ones (at Chinon, Cordemais and Domloup) are within the SEO region, amdsthéat
Flamanville and Launay) are outside SEO. Those contingencies ol8&@e region,
especially Flamanville with two important generators, fallhe testern belt of the French
network and are considered to impose serious influence on SEO regiitaige stability

performance during heavy transactions.
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Fig. 4.6 French EHV network — contingency list

Table 4.1 also provides unavailability rates per year for everyingamicy. The

probability of contingency is computed as per the equation (4.3).
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Table 4.1 Contingency probability

Contingency Unavailability Unavailability Probability
rates/year rates/3 months

CHINON unit 3 0.1925 0.048125 0.04698
CORDEMAIS bus bar 0.316 0.079 0.07596
DOMLOUP bus bar 0.02235 0.005588 0.00557
FLAMANVILLE unit 1 0.1925 0.048125 0.04698
FLAMANVILLE unit 2 0.1925 0.048125 0.04698
FLAMANVILLE N-2 0.03705 0.002316 0.00220
LAUNAY bus bar 0.02235 0.005588 0.00557

4.4.1.2Contingency Severity for Single Stress Direction

Table 4.2 presents the results of computing severity function for @arddous bar fault
using both the proposed methods (Normal as well as M/C learning), Hodifferent stress
directions that are sampled using LHS method. The different homaosiretss directions are
sampled on the basis of stress factor matrix D obtained frdorib&éd data, as was explained
in section 3.3.1.3. The probability of the sampled stress directionsoarputed using the
instance based learninggNN method explained in section 4.3.1.2, and the results in the
Table 4.2 are presented starting from highest probable sliression to the lowest among
the 10 sampled directions.

For the study with the assumption of Normal distribution of loadiogditions, the
probability of collapse was computed along every single stresstion. In the case of M/C
learning method assuming non-Normal distribution, the probabilityoldse is estimated
by mapping all the sampled operating conditions as shown in Fig. 4l teingle stress
direction under consideration. It is seen that the estimated camtihgeverity varies along

every stress direction for both the cases.
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Table 4.2 Cordemais contingency severity estimation for various stredsodisec

Stress Direction No. Probability of Stress Directior Severity

Normal M/C learning
1 0.24513 0.07509 0.12103
2 0.22667 0.16468 0.17641
3 0.16821 0.09783 0.17436
4 0.14667 0.18423 0.20205
5 0.05231 0.12722 0.26462
6 0.02974 0.12681 0.18154
7 0.01231 0.05548 0.06154
8 0.00513 0.05548 0.10974
9 0.0041 0.19641 0.27282
10 0.00103 0.22757 0.13436

Figures 4.7 and 4.8 show contingency severity results given in Babldor the
decreasing order of stress direction probabilities for Normalnen-parametric assumptions
of state space respectively. It is observed that forlilesly stress directions, the severity of
contingency is very high, as it is true that for rare operatorglitions the system is more
prone to post-contingency voltage collapse. If we consider the first 6 dires$ons, in both
Figs. 4.7 and 4.8 it is seen that though stress direction 1 hasrbiggibpity of occurrence
than the stress directions 2, 3, 4, 5 and 6; the severity for lagetidns are much higher
than that of direction 1. So it is important to consider the influencendfiple stress
directions over contingency severity estimates. This would ensoperprealistic estimation
of risk of contingency over many operating conditions sampled &ronultivariate load state

space. Otherwise, we will get misleading results.
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4.4.1.3Contingency Severity for Multiple Stress Directions

Table 4.3 shows the results when multiple stress directionsoastdered for estimating
contingency severity over a multivariate operating paransttge space. The results for
three contingencies are shown, for which the severity (probabilityokdpse) was also
computed by performing proper dynamic simulation using ASTRE sa@dtidis was done
by sampling 975 operating conditions from the non-parametric muéteaioad distribution
using the copula method explained in chapter 3, which also captureste¢hearrelation
among various loads. Then the various base cases formed are d$abgctthe three
contingencies systematically using dynamic simulation and puost-contingency
performances are analyzed. Using the same post-contingencyaanientioned in earlier
chapter for dynamic simulation, i.e., 400 KV voltages and simulationecgauce status, the
various base cases are labeled as acceptable or unacceptathegives the probability of
collapse estimation from simulation. The probability of collapseueslestimated by
simulation is 0.1702, 0.7446, and 0.1466 for the indicated contingencies at Cordemais

Flamanville and Launay respectively.

Table 4.3 Severity estimate comparisons

S. No Contingency Severity

SSDS MVN M/C  Simulatiorn
CORDEMAIS bus bar 0.07509 0.11955 0.16821 0.1702
FLAMANVILLE N-2 1.00000 0.80256 0.77128 0.7446
3 LAUNAY bus bar 0.07042 0.09647 0.16000 0.14666

N -

Table 4.3 also shows the contingency severity estimated usingisyatress directions in

three different ways, i.e., SSDS — only considering the most Iéialyle stress direction,
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MVN — assuming a multivariate Normal distribution of loading conditi@msl M/C — using
Machine learning for operating conditions defined by correlatedtivariate loads that
follows a non-parametric distribution. For MVN and MkZS15 different stress directions
were sampled in the multivariate state space. It is $esritte estimated results using M/C
corroborates with the simulation results. This is due to thetfett the simulation was
performed on operating conditions that were sampled from realistiovamiate distribution
of load that follows non-parametric distribution with mutual load cati@h. Though, MVN
study improves on the estimates computed by SSDS closer tgirthaation results,
nevertheless this study emphasizes that it is essentiakéoingo account the original
historical load distribution’s characteristics to obtain realistisults. So the proposed M/C
based contingency risk estimation method accomplishes this reguiremth a very low
computational cost.

4.4.1.4Risk Based Contingency Ranking

Table 4.4 shows the final risk based contingency ranking resulidordnsidered seven

contingencies using the proposed M/C method.

Table 4.4 Risk based contingency ranking

Rank Contingency Pr (C) Sev (C) Risk (C)

1 CORDEMAIS bus bar 0.07596 0.1682 0.01277
2 FLAMANVILE unit 2 0.04698 0.2010 0.00944
3 FLAMANVILE unit 1 0.04698 0.1928 0.00905
4 CHINON unit 3 0.04698 0.1077 0.00505
5 FLAMANVILLE N-2 0.00220 0.7713 0.00170
6 LAUNANY bus bar 0.00557 0.16 0.00089
7 DOMLOUP bus bar 0.00557 0.0831 0.00046
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Figure 4.9 shows thdhe contingencies with high severity meas necessarily doesr
pose high risk, and hence a risk bacontingency rankinghat also accountfor the

probability of contingencypccurance will be suitable foperational planning stu.
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Fig. 4.9 Contingency severity and risk

We see that the proposM/C based contingency risk estimatiand rankingmethod
works well in identifyingthetop contingencieslhe top contingencies can be screened
a specific cut off value of risk (say, average yisnd decision rules can be derived for
screened critical contingencies posing significegsk over probable operating conditic

4.4.1.5Computational Bene

The proposed risk based contingency ranking methakess a huge amount
computational cost since it uses linear sensi@isitomputed along multiple stress directi

and utilizes machine learning method to estimatersy of every scenario. For insice, the
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risk estimation of 7 contingencies, for a sampled 15 stresdidiredn the study, required
15*7 = 105 CPF simulations and linear sensitivity computations to @stsesgerity of every
contingency over 975 different loading conditions, as shown in Table 4.5.fdrmbe linear
sensitivities, the conventional method would require a huge computatioabaiit
975*7=6825 CPF computations to compute the margin stability or 6825 dynamiatsoons
to compute dynamic performance.

Table 4.5 Computational benefit of proposed CRE

Case Contingencies Operating Conditions Total simulations
Uncertainty: Loads
Conventional 7 975 6825
Proposed CRE (k=15) 7 975 105
Uncertainty: Loads and SVCs
Conventional (estimation) 7 3900 27300
Proposed CRE (k=15) (estimation) 7 3900 105

So the computational cost of proposed CRE doesn’t even depend on the number of
operating conditions sampled, but only on number of homothetic stressotisesampled. If
a very few homothetic stress directions has the ability tateftdy characterize the load
state space, then the computational cost to estimate contingency sevagtyty reduced, as
shown in Table 4.5.

The proposed CRE method’'s ability to reduce computational cost dtlystior
contingency ranking is bolstered when we consider some discretmeitar uncertainties
also, such as SVC unavailability or generator group unavailabitityrethe stage of Monte
Carlo sampling of basecases. Table 4.5 shows the estimated coomalt@quirements for
conventional and proposed CRE method of contingency risk estimation fotioparatate

space comprised of both loading conditions and 2 SVC unavailabilitiese €batd be 4
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combinations of 2 SVC states, i.e., both unavailable (00), one of themilabb/g1 and
10) and both available (11). So systematically combining thes¢e$ stdh the sampled 975
loading conditions, we obtain 3900 basecases or operating conditions. Smvkatonal
contingency severity estimation method will have to perform 3900*7 = 23B00lations
for 7 contingencies. But the computational requirements of the p@iRE method based
on linear sensitivities and machine learning still proportional amlthé number of stress
directions characterizing the load state space. The influendisarete parameter, i.e., SVC
unavailability states can be accounted using the linear sems#jvite., the sensitivity of
stability margin with respect to reactive power injectionlet 8VC buses, as was used
successfully in chapter 3 to find the boundary region.

It should be noted that the proposed CRE | and Il have both almadlstr siomputational
requirements, as shown in Table 4.6. So the proposed contingency risitiestimethod
enables tremendous computational cost reduction for the purpose of sesk dentingency
ranking of multiple contingencies over several operating conditamgled. The number of
stress directions sampled could be increased further for sextemccuracy, and still the
computational requirement would be very less compared to full-fledgewentional

contingency simulations.

Table 4.6 Computational requirements of proposed CRE | and CRE I

Contingency =1and k=15 CREI CREII
CPF computations 15 15
Linear Sensitivity computations 15 15
Stress directions probability estimation using IBk Yes No
Stress directions mapping to operating conditions using IBk No Yes
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4.4.2 Multiple Contingencies Security Assessment

4.4.2.1Contingency Grouping

This section presents the results for the proposed contingency growpiogpt The
following 5 contingencies have been considered: Cordemais bus baFfaoignville unit-2
outage, Chinon unit outage, Launay bus bar fault, and Domloup bus bar fault.

Figure 4.10 shows the progressive entropy curves for all the aboveaoneent
contingencies in the total Brittany load state space. pbssible contingency group
recommendations are as shown in Fig. 4.11. This is because of tis#nets and their
nature of progression along the operating conditions through various rahlgads. So the
proposed grouping promises reduction in the number of operational rules from five to two.

The training databases required for validating the group recommamslatre four as
shown in Fig. 4.12. Therefore the contingency grouping also promises computatisha
benefit by reducing the number of training databases requiredfifrerto four. The two best
common decision rules for all the five contingencies are firsdlgcted by rule validation

process using an independent test data.
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Fig. 4.12 Training Databases required to be generated
Figures 4.13, 4.14 and 4.15 show the progressive entropy curves of various
contingencies on other variables, namely Cordemais bus voltageSEsfaregion reactive

reserve, and Chinon generator group reactive reserve.
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The plots based on the above power system variables too produce sontiagency
grouping recommendations, corroborating the recommendation based aadheatiable.
But the advantage of plotting the progressive entropy for variatolosd parameter is that
it is the sampling parameter, and using linear sensitiviiesperformance measures are
computed without full-fledged simulation. So this saves a lot of compaofaand promises
further computational requirements savings at the stage of trainsigadatgeneration.

Figure 4.16 shows both the estimation and simulation output of progresgropy
curves for Cordemais contingency along the load variable.dtdeae for a sample of 975

loading conditions randomly selected form the multivariate loading distribution.
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Fig. 4.16 Progressive entropy estimation vs. simulation
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4.4.2.20perating Rules Validation

The study specifications for sampling the operating parameters, loading
conditions, generators group unavailability, and SVCs unavailability ittaBy area, are
similar to the study described in chapter 2, with a minor charggedi®g generator groups
considered. In this study the main production units considered are ngidaps in Civaux,
Blayais, and St-Laurent. The units at Flamanville and Chinon arédeoes as part of the
contingency, and so are not included in the sampling strateghieSbree units are sampled
such that each of these three unavailabilities are represenigd”iof the total basecases.
The contingencies are applied at 900s and the ASTRE dynamic somutaterminated at
1500s. The criteria used for labeling scenarios based on post-contingspoynges are
based on EHV bus voltages and simulation status at 1500s, same as 2tsecifications.
Finally the training databases are formed, which contains 40@itéges, SVC outputs and
generator group reactive reserves sampled at 890s of simwdattbe attributes and scenario
labels as the class attribute.

The following results present the performances of various operatlag derived
from a variety of training databases, including the databasesneended in the section
4.4.2.1 by the progressive entropy based contingency grouping method. tEaieiyg
database is around the same size containing about 8000 operatingposnthdependent
test databases are formed for every contingency separat@yaosly following the same
sampling and simulation specifications as mentioned above. All the milEmetest sets
contains about 4000 instances.

Table 4.7 presents the performance results of rules for each ettynderived from

separate a decision tree based on training database contsmggpective post-contingency
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responses. Rule for each contingency is tested against itsthespest set. It can be seen

that the classification accuracies for every contingency geparate decision trees are very

high. But in this case, we end up with five separate rules for five contingencies

Table 4.7 Separate operating rule for every contingency

S No Contingency Accuracy FA Risk
1 Cordemais 94.9783 0.034 0.122
2 Domloup 95.2081 0.039 0.068
3 Flamanville 99.3467 0.001 0.203
4 Chinon 99.3723 0.002 0.308
5 Launay 98.1378 0.008 0.19

Table 4.8 shows the result of rule performance when a common ageived from

the training database containing only the contingency responsesd&n@os bus bar fault,

the contingency with highest risk. The common rule is tested ag#nes specific

contingencies test data, and it is seen that the common sdd ba Cordemais contingency

doesn’t perform well for all the other contingencies. For ladl tontingencies with lower

severity than Cordemais, i.e., the contingencies at Flamarhallmay and Chinon, the false

alarms have increased tremendously. So a common rule based orcaserstontingency

alone will not be suitable for all the other contingencies, includimgnibup which is

grouped together with Cordemais for its similar severity lfea various load ranges as

shown by progressive entropy curves in Fig. 4.10.

Table 4.8 One common rule based on Cordemais contingency responses

S No Contingency Accuracy FA Risk
1 Cordemais 94.9783 0.034 0.122
2 Flamanville 82.5067 0.174 0.203
3 Chinon 82.2067 0.18 0
4 Domloup 87.7057 0.011 0.388
5 Launay 87.2793 0.135 0

www.manaraa.com



118

Table 4.9 shows a common operating rule formed by generatinqnadrdatabase
with operating conditions containing post-contingency responses of ewatingency
proportional to its risk index, as shown in Table 4.4. We can sethéhaile doesn’t perform
well for the most constraining contingency at Cordemais, apmat ifis poor performance for
other contingencies too. So such a common decision tree requires anetagidechniques
to improve its accuracy further, at the cost of overfitting tlee ®nd complicating the
operating rule.

Table 4.9 One common rule based on all the contingency responses

S No Contingency Accuracy FA Risk
1 Cordemais 90.6 0.003 0.5
2 Flamanville 91.331 0.078 0.375
3 Chinon 90.82 0.09 0.273
4 Domloup 84.85 0 0.532
5 Launay 96.36 0.026 0.2

Table 4.10 shows the results for operating rule performance when ntzosdées
grouped with other contingencies. Common operating rule is deriveddbrgeoup based on
training database containing contingency responses proportion to riskesindit
contingencies in that respective group. It is seen that the neended grouping of
Cordemais contingency with Domloup contingency has the best perfa@mahere the
rule’s performance for Cordemais in on par with the highest pegioce obtained in Table
4.7 and the rule’s performance for Domloup betters the performancablasi4.8 and 4.9.
The reduction in common rule’s performance for Domloup contingency cothparEable

4.7 performance can be traded off against the fact that Domloupgemty has the least

www.manaraa.com



119

risk index with very less probability and the prospect of reducingitimeber of operating
rules atleast by one for operator’'s convenience. The rule couldrtier improved by
increasing the representation of post-contingency responses of Doraldupgency more in
the training database.

Table 4.10 Cordemais contingency grouped with other contingencies

Contingency Accuracy
Cordemais 94.8576 92.66 92.63
Domloup | Flamanville | Chinon 89.09 87.07 86.09

Fig. 4.17 shows the top five rule attributes for Group-1 contingencitsstars placed at

Cordemais and Domloup contingency locations.
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It shows rule attributes derived from Cordemais post-contingeesyonse database,
Domloup post-contingency response database and also the common trainingselata
produced based on proportional representation of both the contingepoypses according
to their risk indices. The commonality of the rule attributesetrh case in the French Grid
justifies the grouping of these two contingencies together for $gcadsessment.
Nevertheless, it should be noted that though the rule attributesnaitar, the order they
appear in the tree and their respective thresholds are diftwento the differences in the
training databases for each case.

Table 4.11 shows the results justifying the Group-2 recommendatide m section
4.4.2.1, and also aids in finalizing the common operating rule for the @roaptingencies.
Along the columns is different training databases generatdohgtiom a database made of
Flamanville contingency responses only, then Launay contingenpgn®ss only, then
Flamanville and Launay responses together according to the poopoftitheir their risk
indices, and finally Flamanville, Launay and Chinon responses togettemig to the
proportion of their their risk indices. The firlamanville and fourth Flamanville &
Launay & Chinon are the recommended training databases as per Group recomarendat
So it can be observed that both the recommended training datal®pesdarcing operating
rules that perform well. The rule froflamanville & Launay & Chinon training database
gives the best performance for all the contingencies, and th&omid-lamanville performs
well in proportion to the contingency’s risk index, i.e., for Flamadawith high risk the
performance is the best and for Launay with the lowest risketfermance is least but still

high enough.

www.manaraa.com



121

Table 4.11 Group-2 contingencies rule performances from various traiatalgases

Training Database Flamanville Launay Flamanville & Flamanville &
Launay Launay & Chinon
Contingency
Flamanville 99.3467 92.86 97.67 97.1691
Launay 93.93 98.1378 94.6 95.1515
Chinon 96.517 95.437 97.465 98.1169

The conclusion is that:

1. The contingency grouping recommendation based on progressive entropy doesn’t
give importance to the proximity of contingencies on the FrencH, Gt is
based on the similarity of contingency effects on the operatindittons along
all the load ranges. The final grouping of contingencies is shown in Fig. 4.18.

2. The group recommendations guide in reducing the number of operatisgaule
operator’s convenience and also in generating set of common ritlegowod
performance for multiple contingencies. This is better than havicgmmon rule
for all the contingencies performance wise, and having separatatingetules
for every contingency convenience wise.

3. The decision on best operating rule is taken based on the rulgsnpence on
various contingencies within the group, weighed according to thdewsks of
each contingency.

4. Even if the rules are to be improved by some feedback or metaniga
techniques, this is a better starting point as the degree gdl@aty of the final
rule will be reduced.

5. By using linear sensitivities progressive entropy curves tathal contingencies
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along the load variable are computed at much reduced computation, whnghn furt
helps in reducing the computational requirements for generating ngaini
databases. This is achieved using the guidance obtained from the @ocying
grouping stage.
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6. The proposed criteria of grouping contingency is mainly visual right botvit
can be advanced to include quantitative index by using machine learning
techniques to find the closeness in multivariate regions.

7. The proposed contingency grouping based on overlap of boundary regions can
also be used to group contingencies for other applications, suctctger@awer
planning problems, special protection schemes design for a group of

contingencies, investigating interactions among various defense schemes et

4.5 CONCLUSIONS

This chapter proposed a comprehensive decision tree based povween sysrational
planning for multiple contingencies. The foundation for the chapter ladsby earlier
chapters, where the process of efficient training databaserafjeneis proposed and
illustrated. In this chapter the main contribution was the proposalobased contingency
ranking method and the progressive entropy based contingency groupthgdmThe
developed concepts were demonstrated on the French network foritiiw@ contingency
locations. The contingency risk estimation method based on linedti\st@s and machine
learning techniques for non-parametric operating conditions distnibptoved to produce
realistic results at a much reduced computational cost. Thengently grouping method
guided in obtaining lesser number of operating rules that perfaveis for all the
contingencies in the respective groups, thereby providing systeratoqsethe benefit of

dealing with lesser number of rules.
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CHAPTER 5 CONCLUSIONS

5.1 CONCLUSIONS

Our primary focus in this dissertation has been on power systeratiopal planning
using decision trees against voltage instability issues. Therimotivation of this work is
from the fact that the performance of the operating rules defiven such machine learning
algorithms in real time depends heavily on the quality of datalses for training. Most of
the work in decision tree based security assessment in powemsygms focused in
improving the decision tree algorithm to obtain better classibicgerformance from rules.
While some works have made the crucial observation about the reqguirehgmod training
database, there has not been any work that has developed a sygiesoatiure to generate
a training dataset that has the ability to capture the most tampaand realistic operating
conditions having significant influence on the decision making. Also, thesss generating
operating rules for many contingencies, regarding the claasoiicperformance and system
operators’ convenience, have not been given enough attention.

So, in this dissertation we have developed efficient methods to sgrdbe system
scenarios for generating high information contained databaseaioing the decision trees.
The method is constructed based on Monte Carlo Variance reduction tesharmlidas
been systematically illustrated on a large scale reafsticer network of French EHV grid
with 5331 buses, with explicit focus on the West France, i.e., Byittagion that is prone to
voltage collapse situations during winter periods due to heavy mpadire results showed
significant improvement in the classification performances ofdibesion trees offering

tremendous economic benefits, all at greatly reduced computatiouaderaents inspite of
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considering non-parametric multivariate distributions of operatingnpaters for sampling
operating conditions. The results were analyzed in detail and fh&tance of generating
such intelligent databases for training has been established.

The latter part of the dissertation developed a systematic apptogerform decision
tree based security assessment of multiple contingenciesk dased contingency ranking
method based on instance based learning algorithm was developed, iakiognisideration
the non-parametric nature of operating conditions probability diswibutiAlso a
contingency grouping method was proposed that enabled generating mimomuber of
well performing operating rules for many contingencies, withdaa to alleviate the burden
for operators in making decisions.

All the reduction in computational requirements, i.e., in generatinly imprmation
content training database, estimating risk indices for multipleingericies, and also for
generating operating rules for many contingencies, was \exthiby the proposed Latin
Hypercube Sampling of stress directions in multivariatee stpaice, and also by the use of
linear sensitivities of performance measures.

The specific contributions of the work in this dissertation are:

1. Efficient processing of system scenario®in approach to efficiently sample system

scenarios in machine learning studies for power system seass@gsment that increases
classification accuracy while reducing computing requirements.

a. Sampling from correlated non-parametric multivariate distributiorhe non-

parametric and dependence structure of expected loading scenadosding to
historical observations, were taken into account. This result ingergpperating

rules providing higher classification accuracy, more economic rulh
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interesting monitoring locations that are closer to the contingency event.

b. Fast state space characterizatioh:Latin hypercube sampling of stress directions

and linear sensitivities based method was developed for vergéasification of
high information content region (boundary region) in the multivariateatipg
parameter state space. Since it is based on Monte Carlo stmuiatioesn’t face
any computationally intractable situations as some analytiedlods may face in
finding the closest boundary limits for large scale systems.

2. Operational _security rules of multiple contingencies: A comprehensive

methodology to perform decision tree based security assessfoenmultiple
contingencies.

a. Risk-based contingency ranking: risk-based contingency ranking method has

been developed that helps in screening most critical contingefiocigdanning
under a wide range of scenarios. The method gives accurate risksirgiince it
considers the realistic possibility of loading conditions followamy likely stress
directions from the non-parametric historical distribution. The coniput cost
involved in ranking many contingencies is greatly reduced by usmeprl
sensitivities.

b. Contingency GroupingA contingency grouping method based on newly devised

metric called progressive entropyis developed that guides in generating the
minimum number of well performing operating rules for all the iogancies,
thereby benefiting system operators.

3. Real-time application: The developed methods are systematically implemented in

French power network, focusing on the west France, Brittany reglmn.dissertation
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provided solutions for a realistic voltage stability related operak planning problem
that SEO region of French network faces every winter. The R@Bee company is on
its way to apply the developed efficient processing methodoltsgyfar an investment

planning problem this summer.

5.2 FUTUREWORK

Special Protection System (SPS) reliability assessmerithe main difference between

deriving operating rules and SPS logic are:

a. The SPS logic is automated.

b. The SPS logic is not only limited to critical operating conditioreck&in with respect
to some stability criteria, but also involves automatic corecdiction to safeguard
the system against impending instability.

Also, there are important questions to be answered regarding 8#&e operation

from a ‘system level view’, such as:

(i) Are there system operating conditions (topology, loading, flows, dispatch, andevoltag

levels) that may generate a failure mode for the SPS?

(i) Are there two or more SPS that may interact to produce a failure mode?

So the objective is to develop a decision support tool to perform &R®efmode
identification, logic re-design and risk assessment from demsview’. The contingency
grouping concept will be used to reduce the problem dimension in idegtifye possible
failure modes due to SPS interactions, thereby reducing the compataburden and
analysis complexity. The efficient scenario processing metheelaj#ed in the dissertation

will be used to identify failure modes, estimate risk indices and re-desigro§ES |
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